
FORMAL MODELLING
Modelling Problems in Geometry and Discrete Mathematics

Wolfgang Windsteiger
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Windsteiger@risc.jku.at

MODELLING IN COMBINATORIAL
OPTIMIZATION

COMBINATORIAL OPTIMIZATION

� Combinatorial optimization deals with the optimization of an objective function
over a finite domain (e.g. integers or natural numbers).

� Restrictions allow only finitely many feasible solutions.

� “Solution in principle”: exhaustive search through all finitely many feasible
solutions.

� Examples: travelling salesman problem, minimum spanning tree problem, the
knapsack problem, or the bin packing problem.

Topic III • 65

COMBINATORIAL OPTIMIZATION

� Combinatorial optimization deals with the optimization of an objective function
over a finite domain (e.g. integers or natural numbers).

� Restrictions allow only finitely many feasible solutions.

� “Solution in principle”: exhaustive search through all finitely many feasible
solutions.

� Examples: travelling salesman problem, minimum spanning tree problem, the
knapsack problem, or the bin packing problem.

Topic III • 65

COMBINATORIAL OPTIMIZATION

� Combinatorial optimization deals with the optimization of an objective function
over a finite domain (e.g. integers or natural numbers).

� Restrictions allow only finitely many feasible solutions.

� “Solution in principle”: exhaustive search through all finitely many feasible
solutions.

� Examples: travelling salesman problem, minimum spanning tree problem, the
knapsack problem, or the bin packing problem.

Topic III • 65

COMBINATORIAL OPTIMIZATION

� Combinatorial optimization deals with the optimization of an objective function
over a finite domain (e.g. integers or natural numbers).

� Restrictions allow only finitely many feasible solutions.

� “Solution in principle”: exhaustive search through all finitely many feasible
solutions.

� Examples: travelling salesman problem, minimum spanning tree problem, the
knapsack problem, or the bin packing problem.

Topic III • 65

INTRODUCTORY EXAMPLES

Example
A factory has 10 production stations with equal capabilities. Each machine can
be operated for at most 9 hours per day, production may start at 8:30. Every sta-
tion needs two workers for operation, if a station stays closed the two employees
can be used for other useful tasks. There are 160 orders with different produc-
tion duration that have to be processed on a certain day. Each order can be
processed on any of the stations. The delivery of the final products is scheduled
on the night train leaving the factory no earlier than 18:00. Time for packing the
products on the train is less than half an hour.

Design a “good” production schedule for that day.

Topic III • 66

INTRODUCTORY EXAMPLES

Example
An online shop delivers goods in boxes of maximum capacity 2kg. We have a
concrete order with 96 items with known weights F1, . . . , F96, respectively. How
many boxes do we need to ship all ordered items such that the capacity restric-
tions are all satisfied?

Common pattern:
Distribute items (with given sizes) to boxes (with given capacities).

Topic III • 67

INTRODUCTORY EXAMPLES

Example
An online shop delivers goods in boxes of maximum capacity 2kg. We have a
concrete order with 96 items with known weights F1, . . . , F96, respectively. How
many boxes do we need to ship all ordered items such that the capacity restric-
tions are all satisfied?

Common pattern:
Distribute items (with given sizes)

to boxes (with given capacities).

Topic III • 67

INTRODUCTORY EXAMPLES

Example
An online shop delivers goods in boxes of maximum capacity 2kg. We have a
concrete order with 96 items with known weights F1, . . . , F96, respectively. How
many boxes do we need to ship all ordered items such that the capacity restric-
tions are all satisfied?

Common pattern:
Distribute items (with given sizes) to boxes (with given capacities).

Topic III • 67

THE BIN PACKING PROBLEM

The pattern described above is known in literature as the bin packing problem.

BPP(0, �): Bin Packing Problem

Given: Positive numbers 01, . . . , 0=, �.

Find: : ∈ N and ? : N1,= → N1,: such that ∀
1≤ 9≤:

∑
8

? (8)= 9

08 ≤ �.

� Given = items �1, . . . , �= we need to find a number : of bins �1, . . . , �: .

� Assignment through function ?, which assigns item index 8 a bin index 9 .

� ?(8) = 9 means: item �8 is packed into bin � 9 .

� (:, ?) is a feasible solution for BPP(0, �) if they satisfy the above conditions.

Topic III • 68

THE BIN PACKING PROBLEM

The pattern described above is known in literature as the bin packing problem.

BPP(0, �): Bin Packing Problem

Given: Positive numbers 01, . . . , 0=, �.

Find: : ∈ N and ? : N1,= → N1,: such that ∀
1≤ 9≤:

∑
8

? (8)= 9

08 ≤ �.

� Given = items �1, . . . , �= we need to find a number : of bins �1, . . . , �: .

� Assignment through function ?, which assigns item index 8 a bin index 9 .

� ?(8) = 9 means: item �8 is packed into bin � 9 .

� (:, ?) is a feasible solution for BPP(0, �) if they satisfy the above conditions.

Topic III • 68

THE BIN PACKING PROBLEM

The pattern described above is known in literature as the bin packing problem.

BPP(0, �): Bin Packing Problem

Given: Positive numbers 01, . . . , 0=, �.

Find: : ∈ N and ? : N1,= → N1,: such that ∀
1≤ 9≤:

∑
8

? (8)= 9

08 ≤ �.

� Given = items �1, . . . , �= we need to find a number : of bins �1, . . . , �: .

� Assignment through function ?, which assigns item index 8 a bin index 9 .

� ?(8) = 9 means: item �8 is packed into bin � 9 .

� (:, ?) is a feasible solution for BPP(0, �) if they satisfy the above conditions.

Topic III • 68

THE BIN PACKING PROBLEM

The pattern described above is known in literature as the bin packing problem.

BPP(0, �): Bin Packing Problem

Given: Positive numbers 01, . . . , 0=, �.

Find: : ∈ N and ? : N1,= → N1,: such that ∀
1≤ 9≤:

∑
8

? (8)= 9

08 ≤ �.

� Given = items �1, . . . , �= we need to find a number : of bins �1, . . . , �: .

� Assignment through function ?, which assigns item index 8 a bin index 9 .

� ?(8) = 9 means: item �8 is packed into bin � 9 .

� (:, ?) is a feasible solution for BPP(0, �) if they satisfy the above conditions.

Topic III • 68

THE BIN PACKING PROBLEM

The pattern described above is known in literature as the bin packing problem.

BPP(0, �): Bin Packing Problem

Given: Positive numbers 01, . . . , 0=, �.

Find: : ∈ N and ? : N1,= → N1,: such that ∀
1≤ 9≤:

∑
8

? (8)= 9

08 ≤ �.

� Given = items �1, . . . , �= we need to find a number : of bins �1, . . . , �: .

� Assignment through function ?, which assigns item index 8 a bin index 9 .

� ?(8) = 9 means: item �8 is packed into bin � 9 .

� (:, ?) is a feasible solution for BPP(0, �) if they satisfy the above conditions.

Topic III • 68

VARIANTS OF THE BIN PACKING PROBLEM I

BPDP(0, �, :): Bin Packing Decision Problem

Given: Positive numbers 01, . . . , 0=, � and : ∈ N.

Question: Does there exist a function ? : N1,= → N1,: such that
(:, ?) a feasible solution for BPP(0, �)?

Topic III • 69

VARIANTS OF THE BIN PACKING PROBLEM II

BPOP(0, �): Bin Packing Optimization Problem

Given: Positive numbers 01, . . . , 0=, �.

Find: : ∈ N and ? : N1,= → N1,: such that

1. (:, ?) a feasible solution for BPP(0, �) and
2. : is minimal, i.e.

∀
<<:

∀
@ : N1,=→N1,<

(<, @) is not a feasible solution for BPP(0, �).

Topic III • 70

BIN PACKING AS LINEAR PROGRAMMING PROBLEM

U8 9 :=


1 item �8 goes into bin � 9

0 otherwise
V 9 :=


1 bin � 9 will be occupied

0 otherwise

BPLPP(0, �) : ∀
1≤ 9≤=

=∑
8=1

U8 908 ≤ �V 9 (capacity per bin)

∀
1≤8≤=

=∑
9=1

U8 9 = 1, (every item in exactly one bin)

=∑
9=1

V 9 −→ Min (minimum number of bins)

BPLPP(0, �) forms an integer linear programming problem with integer variables

U8 9 ∈ {0, 1} for 1 ≤ 8, 9 ≤ = and V 9 ∈ {0, 1} for 1 ≤ 9 ≤ =.

Topic III • 71

BIN PACKING AS LINEAR PROGRAMMING PROBLEM

U8 9 :=


1 item �8 goes into bin � 9

0 otherwise
V 9 :=


1 bin � 9 will be occupied

0 otherwise

BPLPP(0, �) : ∀
1≤ 9≤=

=∑
8=1

U8 908 ≤ �V 9 (capacity per bin)

∀
1≤8≤=

=∑
9=1

U8 9 = 1, (every item in exactly one bin)

=∑
9=1

V 9 −→ Min (minimum number of bins)

BPLPP(0, �) forms an integer linear programming problem with integer variables

U8 9 ∈ {0, 1} for 1 ≤ 8, 9 ≤ = and V 9 ∈ {0, 1} for 1 ≤ 9 ≤ =.

Topic III • 71

BIN PACKING AS LINEAR PROGRAMMING PROBLEM

U8 9 :=


1 item �8 goes into bin � 9

0 otherwise
V 9 :=


1 bin � 9 will be occupied

0 otherwise

BPLPP(0, �) : ∀
1≤ 9≤=

=∑
8=1

U8 908 ≤ �V 9 (capacity per bin)

∀
1≤8≤=

=∑
9=1

U8 9 = 1, (every item in exactly one bin)

=∑
9=1

V 9 −→ Min (minimum number of bins)

BPLPP(0, �) forms an integer linear programming problem with integer variables

U8 9 ∈ {0, 1} for 1 ≤ 8, 9 ≤ = and V 9 ∈ {0, 1} for 1 ≤ 9 ≤ =.

Topic III • 71

BIN PACKING AS LINEAR PROGRAMMING PROBLEM

U8 9 :=


1 item �8 goes into bin � 9

0 otherwise
V 9 :=


1 bin � 9 will be occupied

0 otherwise

BPLPP(0, �) : ∀
1≤ 9≤=

=∑
8=1

U8 908 ≤ �V 9 (capacity per bin)

∀
1≤8≤=

=∑
9=1

U8 9 = 1, (every item in exactly one bin)

=∑
9=1

V 9 −→ Min (minimum number of bins)

BPLPP(0, �) forms an integer linear programming problem with integer variables

U8 9 ∈ {0, 1} for 1 ≤ 8, 9 ≤ = and V 9 ∈ {0, 1} for 1 ≤ 9 ≤ =.

Topic III • 71

BIN PACKING AS LINEAR PROGRAMMING PROBLEM

U8 9 :=


1 item �8 goes into bin � 9

0 otherwise
V 9 :=


1 bin � 9 will be occupied

0 otherwise

BPLPP(0, �) : ∀
1≤ 9≤=

=∑
8=1

U8 908 ≤ �V 9 (capacity per bin)

∀
1≤8≤=

=∑
9=1

U8 9 = 1, (every item in exactly one bin)

=∑
9=1

V 9 −→ Min (minimum number of bins)

BPLPP(0, �) forms an integer linear programming problem with integer variables

U8 9 ∈ {0, 1} for 1 ≤ 8, 9 ≤ = and V 9 ∈ {0, 1} for 1 ≤ 9 ≤ =.

Topic III • 71

LINEAR PROGRAMMING STANDARD FORM

Standard form of a linear programming problem for variables G ∈ RC :

" · G ≡ 1 with " ∈ RB×C , 1 ∈ RB,≡ ∈ {≤, =, ≥}
2 · G −→ Min with 2 ∈ RC

For the bin packing problem, the setting from above results in G ∈ R=2+= with

GE :=


U@+1,A+1 1 ≤ E ≤ =2, (@, A) = QuotRem(E − 1, =)
VE−=2 =2 + 1 ≤ E ≤ =2 + =.

Since E = =@ + A + 1 we get

U8 9 = G=(8−1)+ 9 V 9 = G=2+ 9 .

Topic III • 72

LINEAR PROGRAMMING STANDARD FORM

Standard form of a linear programming problem for variables G ∈ RC :

" · G ≡ 1 with " ∈ RB×C , 1 ∈ RB,≡ ∈ {≤, =, ≥}
2 · G −→ Min with 2 ∈ RC

For the bin packing problem, the setting from above results in G ∈ R=2+= with

GE :=


U@+1,A+1 1 ≤ E ≤ =2, (@, A) = QuotRem(E − 1, =)
VE−=2 =2 + 1 ≤ E ≤ =2 + =.

Since E = =@ + A + 1 we get

U8 9 = G=(8−1)+ 9 V 9 = G=2+ 9 .

Topic III • 72

LINEAR PROGRAMMING STANDARD FORM

Standard form of a linear programming problem for variables G ∈ RC :

" · G ≡ 1 with " ∈ RB×C , 1 ∈ RB,≡ ∈ {≤, =, ≥}
2 · G −→ Min with 2 ∈ RC

For the bin packing problem, the setting from above results in G ∈ R=2+= with

GE :=


U@+1,A+1 1 ≤ E ≤ =2, (@, A) = QuotRem(E − 1, =)
VE−=2 =2 + 1 ≤ E ≤ =2 + =.

Since E = =@ + A + 1 we get

U8 9 = G=(8−1)+ 9 V 9 = G=2+ 9 .

Topic III • 72

THE MATRIX " ∈ R(2=)×(=2+=)

Rows 1–=: Capacity restrictions for 1 ≤ 9 ≤ =

(" · G) 9 =
=2+=∑
E=1

" 9EGE =

=∑
8=1

U8 908 − �V 9 =

=∑
8=1

G=(8−1)+ 908 − �G=2+ 9 .

Rows = + 1–2=: Unicity restrictions for 1 ≤ 8 ≤ =

(" · G)=+8 =
=2+=∑
E=1

"=+8,EGE =

=∑
9=1

U8 9 =

=∑
9=1

G=(8−1)+ 9 .

Topic III • 73

THE MATRIX " ∈ R(2=)×(=2+=)

Rows 1–=: Capacity restrictions for 1 ≤ 9 ≤ =

(" · G) 9 =
=2+=∑
E=1

" 9EGE =

=∑
8=1

U8 908 − �V 9 =

=∑
8=1

G=(8−1)+ 908 − �G=2+ 9 .

Rows = + 1–2=: Unicity restrictions for 1 ≤ 8 ≤ =

(" · G)=+8 =
=2+=∑
E=1

"=+8,EGE =

=∑
9=1

U8 9 =

=∑
9=1

G=(8−1)+ 9 .

Topic III • 73

THE MATRIX ": CAPACITY RESTRICTIONS

for 1 ≤ 9 ≤ = : (" · G) 9 =
=2+=∑
E=1

" 9EGE︸ ︷︷ ︸
(∗)

=

=∑
8=1

U8 908 − �V 9 =

=∑
8=1

G=(8−1)+ 908 − �G=2+ 9︸ ︷︷ ︸
(∗∗)

.

Compare the coefficients " 9E of GE in (∗) with those in (∗∗):

� If E = =(8 − 1) + 9 for some 1 ≤ 8 ≤ = then the coefficient is " 9E = 08. Note, that
the condition is equivalent to E mod = = 9 mod =.

� If E = =2 + 9 then the coefficient is " 9E = −�.

� For all other coefficients we have " 9E = 0.

Topic III • 74

THE MATRIX ": CAPACITY RESTRICTIONS

for 1 ≤ 9 ≤ = : (" · G) 9 =
=2+=∑
E=1

" 9EGE︸ ︷︷ ︸
(∗)

=

=∑
8=1

U8 908 − �V 9 =

=∑
8=1

G=(8−1)+ 908 − �G=2+ 9︸ ︷︷ ︸
(∗∗)

.

Compare the coefficients " 9E of GE in (∗) with those in (∗∗):

� If E = =(8 − 1) + 9 for some 1 ≤ 8 ≤ = then the coefficient is " 9E = 08. Note, that
the condition is equivalent to E mod = = 9 mod =.

� If E = =2 + 9 then the coefficient is " 9E = −�.

� For all other coefficients we have " 9E = 0.

Topic III • 74

THE MATRIX ": CAPACITY RESTRICTIONS

for 1 ≤ 9 ≤ = : (" · G) 9 =
=2+=∑
E=1

" 9EGE︸ ︷︷ ︸
(∗)

=

=∑
8=1

U8 908 − �V 9 =

=∑
8=1

G=(8−1)+ 908 − �G=2+ 9︸ ︷︷ ︸
(∗∗)

.

Compare the coefficients " 9E of GE in (∗) with those in (∗∗):

� If E = =(8 − 1) + 9 for some 1 ≤ 8 ≤ = then the coefficient is " 9E = 08. Note, that
the condition is equivalent to E mod = = 9 mod =.

� If E = =2 + 9 then the coefficient is " 9E = −�.

� For all other coefficients we have " 9E = 0.

Topic III • 74

THE MATRIX ": UNICITY RESTRICTIONS

for 1 ≤ 8 ≤ = : (" · G)=+8 =
=2+=∑
E=1

"=+8,EGE︸ ︷︷ ︸
(∗)

=

=∑
9=1

U8 9 =

=∑
9=1

G=(8−1)+ 9︸ ︷︷ ︸
(∗∗)

.

Compare the coefficients "=+8,E of GE in (∗) with those in (∗∗):

� If =(8 − 1) + 1 ≤ E ≤ =8 then the coefficient is "=+8,E = 1.

� For all other coefficients we have "=+8,E = 0.

Topic III • 75

THE MATRIX ": UNICITY RESTRICTIONS

for 1 ≤ 8 ≤ = : (" · G)=+8 =
=2+=∑
E=1

"=+8,EGE︸ ︷︷ ︸
(∗)

=

=∑
9=1

U8 9 =

=∑
9=1

G=(8−1)+ 9︸ ︷︷ ︸
(∗∗)

.

Compare the coefficients "=+8,E of GE in (∗) with those in (∗∗):

� If =(8 − 1) + 1 ≤ E ≤ =8 then the coefficient is "=+8,E = 1.

� For all other coefficients we have "=+8,E = 0.

Topic III • 75

THE MATRIX " AND THE RIGHT-HAND SIDE 1

" 9E :=



0 E− 9
=
+1 1 ≤ 9 ≤ = ∧ (E mod = = 9 mod =) ∧ E ≤ =2

−� 1 ≤ 9 ≤ = ∧ E = =2 + 9
1 9 > = ∧ =(9 − = − 1) + 1 ≤ E ≤ =(9 − =)
0 otherwise.

1 ∈ R2= with 1 9 :=


0 1 ≤ 9 ≤ =
1 otherwise.

The restrictions (" · G) 9 ≡ 1 9 : ≡ :=


≤ 1 ≤ 9 ≤ =
= otherwise.

Topic III • 76

THE MATRIX " AND THE RIGHT-HAND SIDE 1

" 9E :=



0 E− 9
=
+1 1 ≤ 9 ≤ = ∧ (E mod = = 9 mod =) ∧ E ≤ =2

−� 1 ≤ 9 ≤ = ∧ E = =2 + 9
1 9 > = ∧ =(9 − = − 1) + 1 ≤ E ≤ =(9 − =)
0 otherwise.

1 ∈ R2= with 1 9 :=


0 1 ≤ 9 ≤ =
1 otherwise.

The restrictions (" · G) 9 ≡ 1 9 : ≡ :=


≤ 1 ≤ 9 ≤ =
= otherwise.

Topic III • 76

THE MATRIX " AND THE RIGHT-HAND SIDE 1

" 9E :=



0 E− 9
=
+1 1 ≤ 9 ≤ = ∧ (E mod = = 9 mod =) ∧ E ≤ =2

−� 1 ≤ 9 ≤ = ∧ E = =2 + 9
1 9 > = ∧ =(9 − = − 1) + 1 ≤ E ≤ =(9 − =)
0 otherwise.

1 ∈ R2= with 1 9 :=


0 1 ≤ 9 ≤ =
1 otherwise.

The restrictions (" · G) 9 ≡ 1 9 : ≡ :=


≤ 1 ≤ 9 ≤ =
= otherwise.

Topic III • 76

THE OBJECTIVE FUNCTION 2 ∈ R=2+=

2 · G =
=2+=∑
E=1

2EGE︸ ︷︷ ︸
(∗)

=

=∑
9=1

V 9 =

=∑
9=1

G=2+ 9︸ ︷︷ ︸
(∗∗)

.

Compare the coefficients of GE in (∗) with those in (∗∗):

2E :=


0 1 ≤ E ≤ =2

1 otherwise.

Topic III • 77

THE OBJECTIVE FUNCTION 2 ∈ R=2+=

2 · G =
=2+=∑
E=1

2EGE︸ ︷︷ ︸
(∗)

=

=∑
9=1

V 9 =

=∑
9=1

G=2+ 9︸ ︷︷ ︸
(∗∗)

.

Compare the coefficients of GE in (∗) with those in (∗∗):

2E :=


0 1 ≤ E ≤ =2

1 otherwise.

Topic III • 77

BIN PACKING: SOLUTIONS

Suppose (U, V) a solution of BPLPP(0, �). Let c : N1,= → N1,= be a permutation s.t.

∀
1≤ 9≤:

Vc (9) = 1 ∧ ∀
:< 9≤=

Vc (9) = 0.

c permutes the bins: bin 9 occupied if and only if Vc (9) = 1.

Then

: :=
=∑
9=1

V 9 ? : N1,= → N1,: , 8 ↦→ the unique 9 with U8 c (9) = 1

is a solution of BPOP(0, �).

Topic III • 78

BIN PACKING: SOLUTIONS

Suppose (U, V) a solution of BPLPP(0, �). Let c : N1,= → N1,= be a permutation s.t.

∀
1≤ 9≤:

Vc (9) = 1 ∧ ∀
:< 9≤=

Vc (9) = 0.

c permutes the bins: bin 9 occupied if and only if Vc (9) = 1. Then

: :=
=∑
9=1

V 9 ? : N1,= → N1,: , 8 ↦→ the unique 9 with U8 c (9) = 1

is a solution of BPOP(0, �).

Topic III • 78

BIN PACKING: CORRECTNESS

: :=
=∑
9=1

V 9 ? : N1,= → N1,: , 8 ↦→ the unique 9 with U8 c (9) = 1

1. ? is well-defined: for every 1 ≤ 8 ≤ = the unique existence of 9 follows

immediately from
=∑
9=1
U8 c (9) =

=∑
9=1
U8 9 = 1 together with U8 c (9) ∈ {0, 1}.

2. (:, ?) is feasible: let 1 ≤ 9 ≤ : arbitrary but fixed and now∑
8

? (8)= 9

08 =
∑
8

U8 c (9)=1

08 =

=∑
8=1

U8 c (9)08
BPLPP
≤ �Vc (9)

1≤ 9≤:
= �.

3. : is minimal because : =
=∑
9=1
V 9 together with BPLPP.

Topic III • 79

BIN PACKING: CORRECTNESS

: :=
=∑
9=1

V 9 ? : N1,= → N1,: , 8 ↦→ the unique 9 with U8 c (9) = 1

1. ? is well-defined: for every 1 ≤ 8 ≤ = the unique existence of 9 follows

immediately from
=∑
9=1
U8 c (9) =

=∑
9=1
U8 9 = 1 together with U8 c (9) ∈ {0, 1}.

2. (:, ?) is feasible: let 1 ≤ 9 ≤ : arbitrary but fixed and now∑
8

? (8)= 9

08 =
∑
8

U8 c (9)=1

08 =

=∑
8=1

U8 c (9)08
BPLPP
≤ �Vc (9)

1≤ 9≤:
= �.

3. : is minimal because : =
=∑
9=1
V 9 together with BPLPP.

Topic III • 79

BIN PACKING: CORRECTNESS

: :=
=∑
9=1

V 9 ? : N1,= → N1,: , 8 ↦→ the unique 9 with U8 c (9) = 1

1. ? is well-defined: for every 1 ≤ 8 ≤ = the unique existence of 9 follows

immediately from
=∑
9=1
U8 c (9) =

=∑
9=1
U8 9 = 1 together with U8 c (9) ∈ {0, 1}.

2. (:, ?) is feasible: let 1 ≤ 9 ≤ : arbitrary but fixed and now∑
8

? (8)= 9

08 =
∑
8

U8 c (9)=1

08 =

=∑
8=1

U8 c (9)08
BPLPP
≤ �Vc (9)

1≤ 9≤:
= �.

3. : is minimal because : =
=∑
9=1
V 9 together with BPLPP.

Topic III • 79

EXAMPLE

See Mathematica-Demo.

Topic III • 80

APPROXIMATION ALGORITHMS: TERMINOLOGY

� %(G) . . . instance of problem % with input G.

� �(G) . . . result of algorithm � applied to G.

� Structure of optimization problems %: Feasibility + Optimality.
� Given G, find H s.t. . . .

� Feasibility: H fulfills %̄.
� Optimality: H is minimal/maximal w.r.t. some measure.

� For every optimization problem % there is the relaxed problem %̄, which only
covers feasibility but neglects optimality.

Topic III • 81

APPROXIMATION ALGORITHMS: TERMINOLOGY

� %(G) . . . instance of problem % with input G.

� �(G) . . . result of algorithm � applied to G.

� Structure of optimization problems %: Feasibility + Optimality.
� Given G, find H s.t. . . .

� Feasibility: H fulfills %̄.
� Optimality: H is minimal/maximal w.r.t. some measure.

� For every optimization problem % there is the relaxed problem %̄, which only
covers feasibility but neglects optimality.

Topic III • 81

APPROXIMATION ALGORITHMS: TERMINOLOGY

� %(G) . . . instance of problem % with input G.

� �(G) . . . result of algorithm � applied to G.

� Structure of optimization problems %: Feasibility + Optimality.

� Given G, find H s.t. . . .

� Feasibility: H fulfills %̄.
� Optimality: H is minimal/maximal w.r.t. some measure.

� For every optimization problem % there is the relaxed problem %̄, which only
covers feasibility but neglects optimality.

Topic III • 81

APPROXIMATION ALGORITHMS: TERMINOLOGY

� %(G) . . . instance of problem % with input G.

� �(G) . . . result of algorithm � applied to G.

� Structure of optimization problems %: Feasibility + Optimality.
� Given G, find H s.t. . . .

� Feasibility: H fulfills %̄.
� Optimality: H is minimal/maximal w.r.t. some measure.

� For every optimization problem % there is the relaxed problem %̄, which only
covers feasibility but neglects optimality.

Topic III • 81

APPROXIMATION ALGORITHMS: TERMINOLOGY

� %(G) . . . instance of problem % with input G.

� �(G) . . . result of algorithm � applied to G.

� Structure of optimization problems %: Feasibility + Optimality.
� Given G, find H s.t. . . .

� Feasibility: H fulfills %̄.

� Optimality: H is minimal/maximal w.r.t. some measure.

� For every optimization problem % there is the relaxed problem %̄, which only
covers feasibility but neglects optimality.

Topic III • 81

APPROXIMATION ALGORITHMS: TERMINOLOGY

� %(G) . . . instance of problem % with input G.

� �(G) . . . result of algorithm � applied to G.

� Structure of optimization problems %: Feasibility + Optimality.
� Given G, find H s.t. . . .

� Feasibility: H fulfills %̄.
� Optimality: H is minimal/maximal w.r.t. some measure.

� For every optimization problem % there is the relaxed problem %̄, which only
covers feasibility but neglects optimality.

Topic III • 81

APPROXIMATION ALGORITHMS: TERMINOLOGY

� %(G) . . . instance of problem % with input G.

� �(G) . . . result of algorithm � applied to G.

� Structure of optimization problems %: Feasibility + Optimality.
� Given G, find H s.t. . . .

� Feasibility: H fulfills %̄.
� Optimality: H is minimal/maximal w.r.t. some measure.

� For every optimization problem % there is the relaxed problem %̄, which only
covers feasibility but neglects optimality.

Topic III • 81

APPROXIMATION ALGORITHMS: TERMINOLOGY

Definition (Approximation Algorithm)
Let % be an optimization problem and %̄ the relaxed problem ignoring optimality.
We call � an approximation algorithm for problem % if and only if every H = �(G)
is still a solution of %̄(G) but not necessarily a solution of %(G).

Definition (Approximation Quality)
Let % be an optimization problem and H(G) a solution for %(G). We call � a :-
approximation algorithm (: ≥ 1) for % iff for all admissible inputs G of %

�(G)

≤ :H(G) if % is a minimization problem

≥ 1
:
H(G) if % is a maximization problem

Topic III • 82

APPROXIMATION ALGORITHMS: TERMINOLOGY

Definition (Approximation Algorithm)
Let % be an optimization problem and %̄ the relaxed problem ignoring optimality.
We call � an approximation algorithm for problem % if and only if every H = �(G)
is still a solution of %̄(G) but not necessarily a solution of %(G).

Definition (Approximation Quality)
Let % be an optimization problem and H(G) a solution for %(G). We call � a :-
approximation algorithm (: ≥ 1) for % iff for all admissible inputs G of %

�(G)

≤ :H(G) if % is a minimization problem

≥ 1
:
H(G) if % is a maximization problem

Topic III • 82

HEURISTIC APPROXIMATION ALGORITHMS FOR BPP

Theorem
If % ≠ #%, then there is no :-approximation algorithm for the optimal bin packing
problem with : < 3

2 .

Theorem
FFD is a 3

2 -approximation algorithm for the optimal bin packing problem.

Theorem
For all instances G of the bin packing problem with solution H(G) we have

FFD(G) ≤ 11

9
H(G) + 2

3
.

Topic III • 83

HEURISTIC APPROXIMATION ALGORITHMS FOR BPP

Theorem
If % ≠ #%, then there is no :-approximation algorithm for the optimal bin packing
problem with : < 3

2 .

Theorem
FFD is a 3

2 -approximation algorithm for the optimal bin packing problem.

Theorem
For all instances G of the bin packing problem with solution H(G) we have

FFD(G) ≤ 11

9
H(G) + 2

3
.

Topic III • 83

HEURISTIC APPROXIMATION ALGORITHMS FOR BPP

Theorem
If % ≠ #%, then there is no :-approximation algorithm for the optimal bin packing
problem with : < 3

2 .

Theorem
FFD is a 3

2 -approximation algorithm for the optimal bin packing problem.

Theorem
For all instances G of the bin packing problem with solution H(G) we have

FFD(G) ≤ 11

9
H(G) + 2

3
.

Topic III • 83

FFD: FIRST FIT DECREASING HEURISTIC FOR BPP

� Simple heuristic for solving BPP.

� Sort items by decreasing size (big items first).

� For every item: go through all occupied bins and put item in first possible bin.

� If it does not fit in any, then open a new bin.

Topic III • 84

FFD: FIRST FIT DECREASING HEURISTIC FOR BPP

� Simple heuristic for solving BPP.

� Sort items by decreasing size (big items first).

� For every item: go through all occupied bins and put item in first possible bin.

� If it does not fit in any, then open a new bin.

Topic III • 84

FFD: FIRST FIT DECREASING HEURISTIC FOR BPP

� Simple heuristic for solving BPP.

� Sort items by decreasing size (big items first).

� For every item: go through all occupied bins and put item in first possible bin.

� If it does not fit in any, then open a new bin.

Topic III • 84

FFD: FIRST FIT DECREASING HEURISTIC FOR BPP

� Simple heuristic for solving BPP.

� Sort items by decreasing size (big items first).

� For every item: go through all occupied bins and put item in first possible bin.

� If it does not fit in any, then open a new bin.

Topic III • 84

EXAMPLES

See Mathematica Demo.

Topic III • 85

	Modelling in Combinatorial Optimization

