
FORMAL MODELLING
Modelling Problems in Geometry and Discrete Mathematics

Wolfgang Windsteiger
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Windsteiger@risc.jku.at

THE SHORTEST PATH PROBLEM

Topic II • 29

BASIC CONCEPTS

Graphs { appropriate mathematical model for a “network of streets”.

Basic entities: vertices with connections between them, called edges or arcs.

Different aspects:

� Connections can be oriented?

� Can there be more than one edge between to vertices?

� Must vertices connected by an edge be distinct?

� Can edges have values associated?

� Can vertices have values associated?

� etc. etc.

Topic II • 30

TYPICAL EXAMPLE

B

3

2

1

A

Topic II • 31

BASIC DEFINITIONS

Definition (Undirected Simple Graph, Directed Simple Graph)
Let V be a set. The pair G = (V, E) is called an undirected simple graph iff

E ⊆ P(V) and ∀
a∈E
|a| = 2.

The pair (V, E) is called a directed simple graph iff

E ⊆ V2 and ∀
a∈E

a1 , a2.

We call G a simple graph if and only if it is an undirected or a directed graph. If
G is a graph, then V(G) := G1 and E(G) := G2 are called the vertices and edges
of G, respectively.

Topic II • 32

MORE THAN ONE EDGE BETWEEN TWO VERTICES

E can be defined as a multiset E = (A,m), where

A = {a ∈ P(V) | |a| = 2} or A = {a ∈ V2 | a1 , a2}

for undirected graphs or directed graphs, respectively, and

m : A→ N0.

A{ the set of potential edges.

m { the multiplicity of each edge, including the case m(a) = 0 meaning that the
graph does not contain the edge a.

For a multiset E = (A,m) we write a ∈ E if and only if a ∈ A and m(a) ≥ 1.

Topic II • 33

DISTINGUISHABLE EDGES

E can be defined as E = (X, e), where X is a set and

e : X → A with A as above.

X { the names for the edges.

For E = (X, e) we write a ∈ E if and only if ∃
x∈X

e(x) = a.

Topic II • 34

EXAMPLES

1 G1

2 3

An undirected simple graph

G1 = ({1, 2, 3}, {{1, 2}, {2, 3}}),

Topic II • 35

EXAMPLES

1 G2

2 3

A directed simple graph

G2 = ({1, 2, 3}, {(1, 2), (2, 1), (1, 3), (2, 3)}).

Topic II • 36

EXAMPLES

1 G3

2 3

Not an undirected simple graph: contains a double edge between 1 and 2. Can be
defined as

G3 = ({1, 2, 3}, ({{1, 2}, {1, 3}, {2, 3}},m)) with m defined by

a m(a)
{1, 2} 2

{1, 3} 0

{2, 3} 1

Note that one cannot distinguish the two edges between 1 and 2.

Topic II • 37

EXAMPLES

1 G4

2 3

ab

c

Not a simple directed graph: contains two distinct edges a and b from 1 to 2. Can
be defined as

G4 = ({1, 2, 3}, ({a, b, c}, e)) with e defined by

x e(x)
a (1, 2)

b (1, 2)

c (2, 3)

Topic II • 38

LOOPS

By definition, a simple graph cannot contain loops, i.e. edges connecting a vertex
with itself.

“G is a graph” { G is a graph in one of the representations mentioned above.

� G undirected: uv as an abbreviation for an edge {u, v} ∈ E(G).

� G directed: uv as an abbreviation for an edge (u, v) ∈ E(G).

Topic II • 39

NEIGHBOUR, NEIGHBOURHOOD

Definition
Let G be a graph. The vertex v is a neighbour of vertex u if and only if uv ∈ E(G).
Furthermore, we call

NG(u) := {v ∈ V(G) | v is a neighbour of u}

the neighbourhood of u (in G).

Topic II • 40

EXAMPLES

1 G1

2 3

1 G2

2 3

1 G3

2 3

1 G4

2 3

ab

c

Example

NG1(1) = {2} NG1(2) = {1, 3} NG1(3) = {2}

NG2(1) = {2, 3} NG2(2) = {1, 3} NG2(3) = {}

NG3(1) = {2} NG3(2) = {1, 3} NG3(3) = {2}

NG4(1) = {2} NG4(2) = {3} NG4(3) = {}

Topic II • 41

WALK

Definition
Let G be a graph, n ≥ 1, and a, b ∈ V(G). A finite sequence

w : N1,2n+1 → V(G) ∪ E(G)

is called a walk of length n from a to b in G if and only if

∀
0≤i≤n

w2i+1 ∈ V(G) ∀
1≤i≤n

w2i ∈ E(G)

w1 = a,w2n+1 = b ∀
1≤i≤n

w2i = w2i−1w2i+1.

Sequence of vertices of w and the sequence of edges of w:

V(w) : N1,n+1 → V(G), i 7→ w2i−1 E(w) : N1,n → E(G), i 7→ w2i .

Topic II • 42

TRAIL, PATH

Definition
Let G be a graph, n ≥ 1, and a, b ∈ V(G).

1. A finite sequence
t : N1,2n+1 → V(G) ∪ E(G)

is called a trail of length n from a to b in G if and only if t is a walk of length n
from a to b in G and E(t) is injective (from N1,n to E(G)).

2. A finite sequence
p : N1,2n+1 → V(G) ∪ E(G)

is called a path of length n from a to b in G if and only if p is a trail of length n
from a to b in G and V(p) is injective (from N1,n+1 to V(G)).

Topic II • 43

EXAMPLE

w = (2, (2, 1), 1, (1, 2), 2, (2, 1), 1, (1, 3), 3) is a walk of length 4 from 2 to 3 in G2.

V(w) = (2, 1, 2, 1, 3) E(w) = ((2, 1), (1, 2), (2, 1), (1, 3)),

w is neither a trail nor a path in G2.

t = (2, (2, 1), 1, (1, 2), 2, (2, 3), 3) is a trail of length 3 from 2 to 3 in G2.

V(t) = (2, 1, 2, 3) E(t) = ((2, 1), (1, 2), (2, 3)),

t is not a path in G2.

p = (2, (2, 1), 1, (1, 3), 3) is a path of length 2 from 2 to 3 in G2.

V(p) = (2, 1, 3) E(p) = ((2, 1), (1, 3)).

Topic II • 44

WEIGHTED GRAPH

Definition
The triple G = (V, E, c) is called a weighted graph if and only if (V, E) is a graph
and c : E → R. We call c the cost function of G and c(e) the costs of an edge e.

All special properties of the graph (V, E), e.g. being simple, directed, undirected,
translate directly to its weighted variant (V, E, c). A sequence is a walk/trail/path in
(V, E, c) if and only if it is a walk/trail/path in (V, E).

Topic II • 45

EXTENDED COST FUNCTION, DISTANCE

Definition
Let G = (V, E, c) be a weighted graph and F ⊆ E. Then

c(F) :=
∑
e∈F

c(e).

Let w be a walk of length n from a to b in G, then

c(w) :=
∑

e∈E(w)

c(e).

The distance from a to b in G is

distG(a, b) := min({c(w) | w is a walk from a to b in G}).

Topic II • 46

ROUTING PROBLEM IN GRAPH THEORY LANGUAGE

Given a network of streets, we define the vertices

V := {C | there are streets s and t crossing at C}.

Street segment: characterized by its endpoints, i.e. two crossings c1 and c2 on the
same street such that no other crossing lies between c1 and c2.

Street segment between c1 and c2 in both directions: { undirected edge {c1, c2}.

If it can only be used in one direction: { directed edge (c1, c2).

E := {(c1, c2) ∈ V2 | there is a street segment from c1 to c2}.

Topic II • 47

ROUTING PROBLEM IN GRAPH THEORY LANGUAGE

Every street segment (c1, c2) has (non-negative) costs associated, i.e.

c : E → R+0, (x, y) 7→ “costs” for going from x to y

Problem (Shortest Path Problem)

Given: The graph G = (V, E, c) with appropriate cost function c and A, B ∈ V .

Find: d = distG(A, B) and p such that p is a path from A to B in G and
c(p) = d.

Topic II • 48

BASIC CONSIDERATIONS

1. Shortest connection is always a path. Assume it was a walk

w = (A, e1, . . . , ek, x, . . . , x, el, . . . , en, B)

from A to B in G containing vertex x twice. Then take

w̄ = (A, e1, . . . , ek, x, el, . . . , en, B).

w̄ is also a walk from A to B in G with c(w̄) ≤ c(w).

Topic II • 49

BASIC CONSIDERATIONS

2. We use a simple graph, i.e. a graph without multiple edges and loops.
Consider a and b being both edges from x to y and c(a) ≤ c(b) and assume a
shortest path

p = (A, e1, . . . , x, b, y, . . . , en, B)

from A to B in G. Then take

p̄ = (A, e1, . . . , x, a, y, . . . , en, B).

p̄ also a path from A to B in G with c(p̄) ≤ c(p), such that we can always
construct a path with costs at most c(p) avoiding edge b.

Topic II • 50

BASIC CONSIDERATIONS

3. Loops: Consider a being a loop from x to x and assume a shortest trail

p = (A, e1, . . . , ek, x, a, x, el, . . . , en, B)

from A to B in G. Then take

p̄ = (A, e1, . . . , ek, x, el, . . . , en, B).

p̄ also a trail from A to B in G with c(p̄) ≤ c(p), such that we can always
construct a path with costs at most c(p) avoiding loop a.

Topic II • 51

DIJKSTRA’S ALGORITHM

Solves a slightly more general problem: it computes distG(A, v) for all v ∈ V \ {A}
and it allows to reconstruct shortest paths from A to v for all v ∈ V \ {A}.

Basic idea of the algorithm: maintain two sets of vertices C and O = V \ C, where

� C contains the closed vertices v, for which distG(A, v) is already known and

� O are the remaining open vertices v, for which only a tentative distance l(v)
from A is known. In fact, l(v) is the shortest distance from A on a path
containing only vertices in C except the final vertex v.

Topic II • 52

C = ∅, O = V , l(A) = 0

for v ∈ V \ {A} do
l(v) = ∞

end
while O , ∅ do

v = such an o ∈ O with l(o) ≤ l(x) for all x ∈ O
C = C ∪ {v}, O = O \ {v}
distG(A, v) = l(v)
for w ∈ NG(v) do

if l(w) > distG(A, v) + c(vw) then
l(w) = distG(A, v) + c(vw)
preG(w) = v

end
end

end

Topic II • 53

CORRECTNESS OF THE ALGORITHM

The algorithm maintains a loop invariant, namely

∀
x∈C,u∈NG (x)

l(u) ≤ distG(A, x) + c(xu) (1)

∀
x∈C

l(x) = distG(A, x) (2)

∀
o∈O

l(o) ≥ distG(A, o). (3)

Topic II • 55

INITIALIZATION

Before the algorithm enters the while-loop for the first time, (1) and (2) clearly hold
due to C = ∅, and (3) holds because of O = V and l(A) = 0 = distG(A, A) and
l(o) = ∞ ≥ distG(A, o) for all o , A.

Topic II • 56

IN THE LOOP . . .

Now assume (1), (2), and (3) hold at the beginning of one pass through the loop,
we will show that (1), (2), and (3) then also hold at the end of that pass, i.e. we
have to show

∀
x∈C∪{v },u∈NG (x)

l(u) ≤ distG(A, x) + c(xu) (4)

∀
x∈C∪{v }

l(x) = distG(A, x) (5)

∀
o∈O\{v }

l(o) ≥ distG(A, o). (6)

Topic II • 57

PROOF PART I

Let x ∈ C ∪ {v} and u ∈ NG(x). In case x ∈ C, l(u) ≤ distG(A, x) + c(xu) is true by
assumption (1). Now let x = v. By the algorithm, we have l(w) ≤ distG(A, v) + c(vw)
for all w ∈ NG(v) after finishing the for-loop, hence l(u) ≤ distG(A, x) + c(xu).

Topic II • 58

PROOF PART II

Let x ∈ C ∪ {v}. In case x ∈ C, l(x) = distG(A, x) is true by assumption (2). Now let
x = v. First of all we show l(x) ≤ distG(A, x) by contradiction, hence, we assume
l(x) > distG(A, x), i.e. there must be a path P from A to x in G with
c(P) = distG(A, x) < l(x). P contains at least one vertex in O since x = v ∈ O,
hence, there is a minimal i such that pi := V(P)i ∈ O. We then have
l(pi) ≤ distG(A, pi) because there are two cases:

Topic II • 59

PROOF PART II

case i = 1: then p1 = A and l(p1) = l(A) = 0 = distG(A, A) = distG(A, p1) and

case i > 1: from the minimality of i we get pi−1 := V(P)i−1 ∈ C and clearly
pi ∈ NG(pi−1), hence

l(pi)
(1)
≤ distG(A, pi−1) + c(pi−1pi) = c(P1:2i−1) = distG(A, pi).

Note that the last equality holds, because P is a path with lowest
costs from A to x. Therefore, any subpath of P from A to b must be
one with lowest costs to b, because otherwise P would not have
lowest costs to x.

Topic II • 60

PROOF PART II

Finally, we have the contradiction

l(x) = l(v)
choice of v
≤ l(pi) ≤ distG(A, pi)

non-negative weights
≤ distG(A, x) < l(x).

Thus, l(x) ≤ distG(A, x) and together with l(x) = l(v) ≥ distG(A, v) = distG(A, x) by
assumption (3) since v ∈ O we have l(x) = distG(A, x).

Topic II • 61

PROOF PART III

Let o ∈ O \ {v}. In case l(o) = ∞ then l(o) = ∞ ≥ distG(A, o) is trivial. Otherwise l(o)
reflects the costs of a concrete path from A to o, hence l(o) ≥ distG(A, o), by
definition of distG(A, o).

Topic II • 62

IMPLEMENTATION ISSUES

1. The algorithm computes the shortest distances from A to all v in G. If one is
only interested in the shortest distances from A to B then the while-loop can
be terminated as soon as v = B has been chosen and distG(A, B) has been
set.

2. For a real implementation of Dijkstra’s algorithm one should use special
data-structures for storing O such that the choice of v as the o ∈ O with
minimal tentative distance can be performed efficiently. Keywords in this
respect are k-heaps or Fibonacci heaps.

Topic II • 63

A REAL-WORLD PROBLEM

See Mathematica-Demo and Lecture Notes.

Topic II • 64

	Modelling in Graph Theory
	An Introductory Example
	Graph Theory
	Modelling the Shortest-Connection-Problem
	An Algorithm for Solving the Shortest Path Problem

