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AN INTRODUCTORY EXAMPLE

m Given two points A and C and the line passing through A and C.
m Given a point B such that the line AB is perpendicular to the line AC.
m Given a point D such that the line CD is perpendicular to the line AC

C D
Then ¢ *
m the lines AB and CD must be
parallel. A . }5
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AN INTRODUCTORY EXAMPLE

The logical statement describing the geometric situation is

K vc ((perpendicular(A, B, A, C) A perpendicular(C, A, C, D)) = parallel(A, B, C, D))
,B,C,D

with appropriate predicates ‘perpendicular’ and ‘parallel’.
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MODELLING GEOMETRY IN ALGEBRA

1. Introduce a coordinate system:
A=(0,0) B = (b1, b2) C = (c1,¢2) D = (dy, d2).
2. Define predicates:
perpendicular(A, B, A, C) : (Zl) . (Cl) =bic1 + bacy =0

2 c2 ~—
P1

: dy -
perpendicular(C, A, C, D) : Cl) : ( ! Cl) =c1(d1 —c1) + ca(d2 — c2) =0

Cc2 d2 —C2

P2

parallel(A, B,C, D) :

b dy —
2L AT = boy(dh — 1) = bi(da - c2) = 0
—by do — o

P3
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TRANSFORM PROOF GOAL

v (P1=0Ap2=0=p3=0)
bi1,ba,c1,c2,d1,d2

| de’Morgan’s rule

- 3 =0A =0A #0
by,ba,c1,c2,dy,d> n b2 ps
| trick!
- | p1=0Apa=0AFayp3—-1=0
bi,ba,c1,c2,d1,d>2 ao

|l ap # all other variables

- | p1=0Apa=0Aayp3—1=0

b1,ba,c1,c2,d1,d2,a0
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PROOF VS. SYSTEM OF EQUATIONS

- = P1=0Apa=0Aayp3s—1=0

b1,ba,c1,¢2,d1,d2,a0

just expresses that the system of polynomial (algebraic) equations

pP1= 0 bici + bacoy =0
p2=0 i.e. cidy — C% + cody — C% =0
aopp3 — 1=0 aob2d1 — a'gbzcl — a’obldg + a’oblcg -1=0

has no solutions!
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SOLVING SYSTEM OF EQUATIONS

Using Mathematica, we get a solution

c1=0 co=0 b1 =0 by =1 di =1 dy =0 ap = 1.
This means, we have no proof of our statement!
In fact, the solution

A=C B =(0,1) D =(1,0)

gives a counterexample.
The ‘line passing through A and C’ ~» a point.
‘perpendicular(A, B, A, C)’ and ‘perpendicular(C, A, C, D)’ trivially become true.
‘parallel(A, B, C, D)’ is false because AB and CD are perpendicular.
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IMPROVED APPROACH

We used an inaccurate model: 'the line passing through A and C’ ~ A # C.

A#Cmeansci #0V ey #0,i.e.

Jajci—1=0V Jagca—1=0

ay a2

)
3 (e = 1)(aze2—1) =0

1,3
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IMPROVED MODEL

Theorem proved iff

b1C1 + bQCQ =0
ci1dy — C% + cody — C% =0
(a1c1 — D)(azc2—1) =0

agb2d1 - a/()bQC’l — a0b1d2 + Q’()blCQ -1=0

has no solution.

Mathematica confirms that there is no solution ~» original statement proved.
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THE GENERAL MODEL

Let us assume we have a geometrical configuration described by

p1=0 pn=0 q1 #0 gm #0

and a conclusion described by ¢ = 0, where p;, gj, ¢ € Q[xy,...,x] for 1 <i < nand
1<j<m. Then

V (p1=0A...Apy=0Aq1 20N ... Agn#0=c=0)
X1,.eenX]

g
- 3 =(p1=0A...AP,=0Ag1 #0A...Agn0=c=0)
X[

Xl,oo
(i
- 3 p1=0A.. Apy=0Aq #0A...AN@gm#0Ac#0

X1see0 X]
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RABINOVICH-TRICK

The negated equalities can then be turned into equalities:
- 33 p1=0A... AP, =0ANTa1qg1—-1=0A...AN T angm—-—1=0AFaypc—1=0
X1yeeen X[ [e5} Um g
0 @y, 1, . .., @y, @re new variables

= 3 pr1=0A... App=0ANa1qg1—1=0A... ANayugm—-—1=0Aapgc—1=0

X1see s X[, @0, Q15 0s Oy
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PROOF VS. SYSTEM OF EQUATIONS

= 3 P1=0A...App,=0ANa1q1 —1=0A...ANaugm—-—1=0Aapc—-1=0

X15eees X[,Q0,q1,--,Am

means that . ..
the system of polynomial equations in the variables x1, ..., x;, ag, a1, . . .,
p1=0 ... p,=0
aiq1—1=0 ... augn—-1=0
apc—1=0

has no solutions for xy, ..., x;, ag, a1, . . ., @m.
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EXAMPLE: THEOREM OF THALES

Let A and B be two points and M the midpoint between A and B. Let ¢ be the
circle with center M through A and B, and let C be any point on ¢. Then AC and
BC are perpendicular.

Coordinates: M = (0,0), A = (a1, as), B = (b1, b2),C = (c1, ¢2).

ai+b;1 =0 as+ by =0 (M is the midpoint between A and B)
A+ai-cl-c2=0 (distance from A and C to M must be equal)
(c1 —ar)(c1 —b1) + (cog —as)(cag —by) =0 (AC and BC are perpendicular)
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EXAMPLE: THEOREM OF THALES - EQUATIONS

2 2

a% + a% —ci—c; = 0

ay + b1 =0

as+by = 0

ap((c1 —ar)(cy —b1) +(c2 —azx)(ca —=b2)) =1 = 0

No solution, because equations 2 and 3 mean a; = —b; and as = —bs.
Substitution in equation 4:

ap(c? —aj+c3—-a3)-1=0, i.e. —1=0~> no solution

=0 by equation 1
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SOLVABILITY OF SYSTEMS OF POLYNOMIAL EQUATIONS

Given a set of polynomials G, a Grébner basis of G is a set of polynomials B, s.t.

V (V glxt,...,xp) =0 V b(xy,...,x,) =0),
beB

X1,--»Xn g€G

and B has some special properties that make the system Vv b(x1,...,x,) =0
beB
‘easier to solve’ than the original system Vv g(x1,...,x,) =0.
geG

Systems of Polynomial Equations ‘ Systems of Linear Equations
Grébner basis of G \ triangular form of a matrix
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COMPUTING GROBNER BASES

Bruno Buchberger (the founder of RISC) P algorithm that computes a Grébner
basis for any given set of polynomials G.

Similar to Gaussian elimination: eliminate variables step-by-step by polynomial
reduction.

Polynomial reduction: Subtract multiples of one polynomial from other polynomials
in order to cancel terms. Generalization of the univariate polynomial division to
multivariate polynomials. Details see “Computer Algebra”.

Implemented in every computer algebra system (like Mathematica, Maple, or
Sage).
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GROBNER BASES AND SYSTEMS OF EQUATIONS

A system of polynomial equations

g1=0, ... ,2,=0

has no solutions over C if and only if the Grébner basis of {g1, .. .,gn} contains a
constant polynomial unequal to 0.

Hence, solvability of systems of polynomial equations can be decided by Grébner
bases.
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EXAMPLE: THALES WITH GROBNER BASIS

Using Mathematica, we compute

GroebnerBasis[{a% + ag - c% - cg, aj + by, as + bo,

ao((c1 — ar)(c1 = br) + (c2 — a2)(c2 — ba)) — 1}, {ay, az, by, ba, c1, c2, ap}]

and the answer is {1}, thus, the Grbébner basis contains the constant polynomial 1
and the system of equations corresponding to the Theorem of Thales is
unsolvable, therefore the theorem is proven.
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POINTS ON A LINE

X1 =(31) Xz = (33) X3 =(33) Xi=(31).

X1, Xo, X3 (and X4) are collinear if and only if

1 x1 y1 x2+y?
L xon 1 x X92 + yg2
det(| 1 x3 y2 [)=0 respectively det( A ‘) y22 ) = 0.
o 1 x3 y3 x3°+y3
3 Y3
1 oxs ya x4+ y4?
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PERPENDICULAR AND PARALLEL

1. X1 X, and X3X, are perpendicular if and only if

(x2 — x1)(x4 — x3) + (y2 = y1)(ya — y3) = 0.

2. X1 X5 and X3X, are parallel if and only if

(y2 — y1)(x4 — x3) — (2 — x1)(y4 — y3) = 0.
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EXAMPLE: THEOREM OF PAPPUS

Given one set of collinear points R, S, and T, and another set of collinear points U,
V,and W, s.t. R, S, and U and R, S, and V, respectively, are not collinear.

Then the intersection points X, Y, and Z of line pairs RV and SU, RW and TU, SW
and TV are collinear.
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POLYNOMIAL MODEL

R=(}) §=(5)
U= (1) v=(3)
X= (1) v=(3)
X=RVNSU:R,V,and X as well as §, U, and X are collinear, i.e.

1 r ro

det(| 1 vy vg |)=—rovi+rive+rax; —rixs—voxs +vixg =0
1 X1 X2
1 51 S92

det(| 1 wuy wug |) = —soui + S1uo + Sox1 — S1x2 + Ui xg — uox; =0
1 X1 X2
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POLYNOMIAL MODEL: n =8, m =2, AND [/ = 18

—IroV1 + vy + roXy — riXxe + viXo — VoXq

—SoU1 + S1Uo + SoX1 — S1Xo + U1 X2 — UsXq

—Irgwi triwa +ray1 —riyz2 + wiys — wayi
—louy + g +12y1 —f1y2 + U1Y2 — U2Y1

—S2Ww1 + S1W2 + 5271 — S122 + W12 — Waly

—lov1 + 11Vve + 1271 — 1122 + V122 — V2Zq

—ro81 + 1189 +1roft] —rito + S1to — Sofy

—UoV] + U1Vy + UsW — UTWo + VIWg — VoW

aq (—rosy + r189 + rouy — rius + s1us — Soup) — 1
(0% (—r2s1 + 71180 +1r9vy —rve + S1Vo — S2V1) -1
@p (—X2y1 + X1y2 + X221 — X122 + Y122 — Y221) — 1

Grobner basis = {1} ~ Theorem of Pappus proved!

JXU LRy
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ARBITRARY BOOLEAN COMBINATIONS

Same technique can be applied to arbitrary universally quantified boolean
combinations of polynomial equalities (negated equalities: p # 0 = =(p = 0)).

Prove: Y @,

X1yeeunX]
where @ is an arbitrary boolean combination of polynomial equations with
polynomials in Q[xy, ..., x;]. Rewrite the statement as

- 3 —|(D,

X1seeenX]

and then convert —=® into conjunctive normal form resulting in

X

- 3 (q)l,lV---V(Dl,jl)/\---/\(q)n,lv---\/(Dn,j,,)’
TseeenX]

where each @; ; has the form either P; ; = 0 or ~(P; ; = 0).
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FROM CONJUNCTIVE NORMAL FORM TO EQUATIONS

0 P;; if ®; ; has the form P; ; =0
o ai,jPi,j -1 if q)i,j has the form —|(Pi,j = 0)

with new variables «; ; (existentially quantified! See Rabinovich-Trick). Since the
«; ; are new and distinct from xy, ..., x:

- 3 Q1,1=0V...VO1;; =0)A...A(Qn1=0V...VQyj, =0).

X1,..0x{ai ) }

and finally

- 3 (Ql,l'---'Ql,j1ZO)/\---/\(Qn,l'---'Qn,jn:0)-

X1,-uXp{ai )
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THE FINAL SYSTEM OF EQUATIONS

The original statement is equivalent to the unsolvability of the system of
polynomial equations

O11-...-015, = 0

Qn,l Teee Qn,]n = 0’
which can be decided by computing
B = GroebnerBasis[{Q11-...- Q1> Ont1--oOnjntl

and checking, whether B contains a constant polynomial unequal to 0.
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EXAMPLE

Generalization of introductory example: if we have two perpendicular lines, then
being parallel to one of them is the same as being perpendicular to the other.

With appropriate side-conditions:

Y A+ CAA#BAperpendicular(A, B, A, C) =
A,B,C,D

perpendicular(C, A, C, D) < parallel(A, B, C, D)
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EXAMPLE
A =(0,0) B = (b1, b2) C =(c1,c2) D = (dy, d>)
Conjunctive normal form of the negated expression inside the quantifier gives
(by #0V by #0)A(c1 #0V ey #0) A
A (=parallel(A, B, C, D) v =perpendicular(C, A, C, D)) A
A (parallel(A, B, C, D) v perpendicular(C, A, C, D)) A
A perpendicular(A, B, A, C)

Written out:

(b1 #0Vby#0)A(c1 #0Vea #0)A
A(ba(di —c1)=by(dy —c2) #0V —c1(dy —c1) —ca(da —c2) #0) A
AN(ba(dy—c1)=bi1(do—c2) =0V —cy(di —c1)—ca(da —c2) =0) A

A bici + baco = 0.
Topic | e 27
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EXAMPLE

Rabinovich-Trick + disjunctions — products

{—aob1 + Qlaoblbg —ai1by + 1, —ascy + agascicy — ages + 1,

—014a/5bgci3 + a4a5blcgcf + aybocy — a4a5b2c§cl —aybico + a4a5b1c§’ +
2&405[)26‘%0’1 - 014(25[)16‘%(112 - a/4a5b201d12 — agasbicacidy + agasbocacids +
Q4C¥5b1€1d1d2 + G4Q5b1€2d§ + Q4Q5b265d1 - 2614&’51)1C§d2 - Q4C¥5b2C2d1d2 - CL’4b2d1 +

aybidy — Cl/5(,’% — CYE,CS + C¥561d1 + ascods + 1,
2b2C%d1 - blcfdg — b26‘1d12 — byicacidy + bacocids + bicidids + blc‘ng + bgcgdl —
2b1C§d2 - b2c2d1d2 - bQC‘f + blcgcf - b2C§C1 + blcg’,

b161 + bQCQ},

whose Grobner basis is again {1}, hence, the statement is proved.
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