
LOGICAL MODELS OF
PROBLEMS AND COMPUTATIONS
Theory and Software

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Logical Models of Problems and Computations

What is the purpose of logical modeling?

■ Precisely describe the problem to be solved.
□ Clarification of mind, resolution of ambiguities.
□ Specification of program to be developed.

■ Software-supported analysis of the problem and its solution.
□ Validation of specification.
□ Validation/verification of solution.
□ Interactive/automatic provers and model checkers.

■ Automatic computation of solution respectively simulation of execution.
□ Logical solvers (SMT: Satisfiability Modulo Theories) and theorem provers.
□ Perhaps: rapid prototyping of a later manually written program.

To profit from software, we need computer-understandable models.

1/48

1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

2/48

Specifying Problems

■ A (computational) problem:

Input: 𝑥1 ∈ 𝑇1, . . . , 𝑥𝑛 ∈ 𝑇𝑛 where 𝐼𝑥

Output: 𝑦1 ∈ 𝑈1, . . . , 𝑦𝑚 ∈ 𝑈𝑚 where 𝑂𝑥,𝑦

■ Input variables 𝑥1, . . . , 𝑥𝑛.
□ With types 𝑇1, . . . , 𝑇𝑛.

■ Input condition (precondition) 𝐼𝑥.
□ A formula whose free variables occur in 𝑥1, . . . , 𝑥𝑛.

■ Output variables 𝑦1, . . . , 𝑦𝑚.
□ With types 𝑈1, . . . ,𝑈𝑚.

■ Output condition (postcondition) 𝑂𝑥,𝑦.
□ A formula whose free variables occur in 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚.

Formulas refer to functions and predicates that characterize the problem domain.

3/48

Example

Extract from a finite sequence 𝑠 a subsequence of length 𝑛 starting at position 𝑝.

𝑠

𝑡

𝑛
𝑝

Input: 𝑠 ∈ 𝑇∗, 𝑛 ∈ ℕ, 𝑝 ∈ ℕ where

𝑛 + 𝑝 ≤ length(𝑠)
Output: 𝑡 ∈ 𝑇∗ where

length(𝑡) = 𝑛 ∧
∀𝑖 ∈ ℕ. 𝑖 < 𝑛 ⇒ 𝑡 [𝑖] = 𝑠[𝑖 + 𝑝]

The resulting sequence must have appropriate length and contents.
4/48

Implementing Problem Specifications

■ The specification demands a function 𝑓 : 𝑇1 × . . .×𝑇𝑛 → 𝑈1 × . . .×𝑈𝑚 such that

∀𝑥1 ∈ 𝑇1, . . . , 𝑥𝑛 ∈ 𝑇𝑛. 𝐼𝑥 ⇒ let (𝑦1, . . . , 𝑦𝑚) = 𝑓 (𝑥1, . . . , 𝑥𝑛) in 𝑂𝑥,𝑦

□ For all arguments 𝑥1, . . . , 𝑥𝑛 that satisfy the input condition,
□ the result (𝑦1, . . . , 𝑦𝑚) of 𝑓 satisfies the output condition.

■ The specification itself already implicitly defines such a function:

𝑓 (𝑥1, . . . , 𝑥𝑛) := choose 𝑦1 ∈ 𝑈1, . . . , 𝑦𝑚 ∈ 𝑈𝑚. 𝑂𝑥,𝑦

□ An implicit function definition (whose result is arbitrary, if no values satisfy 𝑂).
■ An actual implementation must provide an explicitly defined function.

□ Right-side of definition is a term that describes a constructive computation.

The ultimate goal of computer science/mathematics is to provide explicit
definitions of functions (i.e., programs) that implement problem specifications.

5/48

Function Definitions

■ An (explicit) function definition

𝑓 : 𝑇1 × . . . × 𝑇𝑛 → 𝑇

𝑓 (𝑥1, . . . , 𝑥𝑛) := 𝑡𝑥

□ Special case 𝑛 = 0: a constant definition 𝑐 : 𝑇, 𝑐 := 𝑡.

■ Function constant 𝑓 of arity 𝑛.

■ Type signature 𝑇1 × . . . × 𝑇𝑛 → 𝑇 .

■ Parameters 𝑥1, . . . , 𝑥𝑛 (variables).

■ Body 𝑡𝑥 (a term whose free variables occur in 𝑥1, . . . , 𝑥𝑛).

We thus know ∀𝑥1 ∈ 𝑇1, . . . , 𝑥𝑛 ∈ 𝑇𝑛. 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑡𝑥.

6/48

Examples
■ Definition: Let 𝑥 and 𝑦 be natural numbers. Then the square sum of 𝑥 and 𝑦 is

the sum of the squares of 𝑥 and 𝑦.

squaresum: ℕ ×ℕ → ℕ

squaresum(𝑥, 𝑦) := 𝑥2 + 𝑦2

■ Definition: Let 𝑥 and 𝑦 be natural numbers. Then the squared sum of 𝑥 and 𝑦

is the square of 𝑧 where 𝑧 is the sum of 𝑥 and 𝑦.

sumsquared: ℕ ×ℕ → ℕ

sumsquared(𝑥, 𝑦) := let 𝑧 = 𝑥 + 𝑦 in 𝑧2

■ Definition: Let 𝑛 be a natural number. Then the square sum set of 𝑛 is the set
of the square sums of all numbers 𝑥 and 𝑦 from 1 to 𝑛.

squaresumset : ℕ → P(ℕ)
squaresumset(𝑛) := {squaresum(𝑥, 𝑦) | 𝑥, 𝑦 ∈ ℕ ∧ 1 ≤ 𝑥 ≤ 𝑛 ∧ 1 ≤ 𝑦 ≤ 𝑛}

7/48

Predicate Definitions

■ An (explicit) predicate definition

𝑝 ⊆ 𝑇1 × . . . × 𝑇𝑛

𝑝(𝑥1, . . . , 𝑥𝑛) :⇔ 𝐹𝑥

■ Predicate constant 𝑝 of arity 𝑛.

■ Type signature 𝑇1 × . . . × 𝑇𝑛.

■ Parameters 𝑥1, . . . , 𝑥𝑛 (variables).

■ Body 𝐹𝑥 (a formula whose free variables occur in 𝑥1, . . . , 𝑥𝑛).

We thus know ∀𝑥1 ∈ 𝑇1, . . . , 𝑥𝑛 ∈ 𝑇𝑛. 𝑝(𝑥1, . . . , 𝑥𝑛) ⇔ 𝐹𝑥.

8/48

Examples

■ Definition: Let 𝑥, 𝑦 be natural numbers. Then 𝑥 divides 𝑦 (written as 𝑥 |𝑦) if
𝑥 · 𝑧 = 𝑦 for some natural number 𝑧.

| ⊆ ℕ ×ℕ

𝑥 |𝑦 :⇔ ∃𝑧 ∈ ℕ. 𝑥 · 𝑧 = 𝑦

■ Definition: Let 𝑥 be a natural number. Then 𝑥 is prime if 𝑥 is at least two and
the only divisors of 𝑥 are one and 𝑥 itself.

isprime ⊆ ℕ

isprime(𝑥) :⇔ 𝑥 ≥ 2 ∧ ∀𝑦 ∈ ℕ. 𝑦 |𝑥 ⇒ 𝑦 = 1 ∨ 𝑦 = 𝑥

■ Definition: Let 𝑝, 𝑛 be a natural numbers. Then 𝑝 is a prime factor of 𝑛, if 𝑝 is
prime and divides 𝑛.

isprimefactor ⊆ ℕ ×ℕ

isprimefactor(𝑝, 𝑛) :⇔ isprime(𝑝) ∧ 𝑝 |𝑛
9/48

Implicit Definitions

■ An implicit function definition

𝑓 : 𝑇1 × . . . × 𝑇𝑛 → 𝑇

𝑓 (𝑥1, . . . , 𝑥𝑛) := choose 𝑦 ∈ 𝑇. 𝐹𝑥,𝑦

■ Function constant 𝑓 of arity 𝑛.

■ Type signature 𝑇1 × . . . × 𝑇𝑛 → 𝑇 .

■ Parameters 𝑥1, . . . , 𝑥𝑛 (variables).

■ Result variable 𝑦.

■ Result condition 𝐹𝑥,𝑦 (a formula whose free variables occur in 𝑥1, . . . , 𝑥𝑛, 𝑦).

We thus know ∀𝑥1 ∈ 𝑇1, . . . , 𝑥𝑛 ∈ 𝑇𝑛. (∃𝑦 ∈ 𝑇. 𝐹𝑥,𝑦) ⇒ let 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛) in 𝐹𝑥,𝑦.

10/48

Examples
■ Definition: A root of 𝑥 is some 𝑦 such that 𝑦 squared is 𝑥 (if such a 𝑦 exists).

aRoot : ℝ→ ℝ

aRoot(𝑥) := choose 𝑦 ∈ ℝ. 𝑦2 = 𝑥

■ Definition: The root of 𝑥 ≥ 0 is that 𝑦 such that the square of 𝑦 is 𝑥 and 𝑦 ≥ 0.

theRoot : ℝ≥0 → ℝ≥0
theRoot(𝑥) := choose 𝑦 ∈ ℝ≥0. 𝑦

2 = 𝑥 ∧ 𝑦 ≥ 0

■ Definition: The quotient 𝑞 of 𝑚 and 𝑛 ≠ 0 is such that 𝑚 = 𝑛 · 𝑞 + 𝑟 for some 𝑟 < 𝑛.

quotient : ℕ ×ℕ\{0} → ℕ

quotient(𝑚, 𝑛) := choose 𝑞 ∈ ℕ. ∃𝑟 ∈ ℕ. 𝑚 = 𝑛 · 𝑞 + 𝑟 ∧ 𝑟 < 𝑛

■ Definition: The 𝑔𝑐𝑑 (𝑥, 𝑦) of 𝑥, 𝑦 (not both 0), is the greatest number dividing 𝑥 and 𝑦.

gcd: (ℕ ×ℕ)\{(0, 0)} → ℕ

gcd(𝑥, 𝑦) := choose 𝑧 ∈ ℕ. 𝑧 |𝑥 ∧ 𝑧 |𝑦 ∧ ∀𝑧′ ∈ ℕ. 𝑧′ |𝑥 ∧ 𝑧′ |𝑦 ⇒ 𝑧′ ≤ 𝑧

Function result need not be uniquely defined (may be even arbitrary). 11/48

Predicates versus Functions

A predicate gives rise to functions in two ways.

■ A predicate:

isprimefactor ⊆ ℕ ×ℕ

isprimefactor(𝑝, 𝑛) :⇔ isprime(𝑝) ∧ 𝑝 |𝑛

■ An implicitly defined function:

someprimefactor : ℕ → ℕ

someprimefactor(𝑛) := choose 𝑝 ∈ ℕ. isprimefactor(𝑝, 𝑛)

■ An explicitly defined function whose result is a set:

allprimefactors : ℕ → P(ℕ)
allprimefactors(𝑛) := {𝑝 | 𝑝 ∈ ℕ ∧ isprimefactor(𝑝, 𝑛)}

The preferred style of definition is a matter of taste and purpose.
12/48

The Adequacy of Specifications

Given a specification
Input: 𝑥 where 𝑃𝑥 Output: 𝑦 where 𝑄𝑥,𝑦

we may ask the following questions:

■ Is precondition satisfiable? (∃𝑥. 𝑃𝑥)
□ Otherwise no input is allowed.

■ Is precondition not trivial? (∃𝑥. ¬𝑃𝑥)
□ Otherwise every input is allowed, why then the precondition?

■ Is postcondition always satisfiable? (∀𝑥. 𝑃𝑥 ⇒ ∃𝑦.𝑄𝑥,𝑦)
□ Otherwise no implementation is legal.

■ Is postcondition not always trivial? (∃𝑥, 𝑦. 𝑃𝑥 ∧ ¬𝑄𝑥,𝑦)
□ Otherwise every implementation is legal.

■ Is result unique? (∀𝑥, 𝑦1, 𝑦2. 𝑃𝑥 ∧𝑄𝑥,𝑦1 ∧𝑄𝑥,𝑦2 ⇒ 𝑦1 = 𝑦2)
□ Whether this is required, depends on our expectations.

13/48

Example: The Problem of Integer Division
Input: 𝑚 ∈ ℕ, 𝑛 ∈ ℕ Output: 𝑞 ∈ ℕ, 𝑟 ∈ ℕ where 𝑚 = 𝑛 · 𝑞 + 𝑟

■ The postcondition is always satisfiable but not trivial.
□ For 𝑚 = 13, 𝑛 = 5, e.g., 𝑞 = 2, 𝑟 = 3 is legal but 𝑞 = 2, 𝑟 = 4 is not.

■ But the result is not unique.
□ For 𝑚 = 13, 𝑛 = 5, both 𝑞 = 2, 𝑟 = 3 and 𝑞 = 1, 𝑟 = 8 are legal.

Input: 𝑚 ∈ ℕ, 𝑛 ∈ ℕ Output: 𝑞 ∈ ℕ, 𝑟 ∈ ℕ where 𝑚 = 𝑛 · 𝑞 + 𝑟 ∧ 𝑟 < 𝑛

■ Now the postcondition is not always satisfiable.
□ For 𝑚 = 13, 𝑛 = 0, no output is legal.

Input: 𝑚 ∈ ℕ, 𝑛 ∈ ℕ where 𝑛 ≠ 0 Output: 𝑞 ∈ ℕ, 𝑟 ∈ ℕ where 𝑚 = 𝑛 · 𝑞 + 𝑟 ∧ 𝑟 < 𝑛

■ The precondition is not trival but satisfiable.
□ 𝑚 = 13, 𝑛 = 0 is not legal but 𝑚 = 13, 𝑛 = 5 is.

■ The postcondition is always satisfiable and result is unique.
□ For 𝑚 = 13, 𝑛 = 5, only 𝑞 = 2, 𝑟 = 3 is legal. 14/48

Example: The Problem of Linear Search

Given a finite integer sequence 𝑎 and an integer 𝑥, determine the smallest
position 𝑝 at which 𝑥 occurs in 𝑎 (𝑝 = −1, if 𝑥 does not occur in 𝑎).

Example: 𝑎 = [2, 3, 5, 7, 5, 11], 𝑥 = 5 { 𝑝 = 2

Input: 𝑎 ∈ ℤ∗, 𝑥 ∈ ℤ

Output: 𝑝 ∈ ℕ ∪ {−1} where

let 𝑛 = length(𝑎) in
if ∃𝑝 ∈ ℕ. 𝑝 < 𝑛 ∧ 𝑎[𝑝] = 𝑥

then 𝑝 < 𝑛 ∧ 𝑎[𝑝] = 𝑥 ∧
(
∀𝑞 ∈ ℕ. 𝑞 < 𝑛 ∧ 𝑎[𝑞] = 𝑥 ⇒ 𝑝 ≤ 𝑞

)
else 𝑝 = −1

All inputs are legal; a result with the specified property always exists and is
uniquely determined.

15/48

Example: The Problem of Binary Search

Given a finite integer sequence 𝑎 sorted in ascending order and an integer 𝑥,
determine some position 𝑝 at which 𝑥 occurs in 𝑎 (𝑝 = −1, if 𝑥 does not occur in 𝑎).

Example: 𝑎 = [2, 3, 5, 5, 5, 7, 11], 𝑥 = 5 { 𝑝 ∈ {2, 3, 4}

Input: 𝑎 ∈ ℤ∗, 𝑥 ∈ ℤ where

let 𝑛 = length(𝑎) in ∀𝑘 ∈ ℕ. 𝑘 < 𝑛 − 1 ⇒ 𝑎[𝑘] ≤ 𝑎[𝑘 + 1]
Output: 𝑝 ∈ ℕ ∪ {−1} where

if ∃𝑝 ∈ ℕ. 𝑝 < 𝑛 ∧ 𝑎[𝑝] = 𝑥

then 𝑝 < 𝑛 ∧ 𝑎[𝑝] = 𝑥

else 𝑝 = −1

Not all inputs are legal; for every legal input, a result with the specified property
exists but may not be unique.

16/48

Example: The Problem of Sorting

Given a finite integer sequence 𝑎, determine that permutation 𝑏 of 𝑎 that is sorted
in ascending order.

Example: 𝑎 = [5, 3, 7, 2, 3] { 𝑏 = [2, 3, 3, 5, 7]

Input: 𝑎 ∈ ℤ∗

Output: 𝑏 ∈ ℤ∗where

let 𝑛 = length(𝑎) in
length(𝑏) = 𝑛 ∧ (∀𝑘 ∈ ℕ. 𝑘 < 𝑛 − 1 ⇒ 𝑏[𝑘] ≤ 𝑏[𝑘 + 1]) ∧
∃𝑝 ∈ ℕ∗. length(𝑝) = 𝑛 ∧

(∀𝑘 ∈ ℕ. 𝑘 < 𝑛 ⇒ 𝑝 [𝑘] < 𝑛) ∧
(∀𝑘1 ∈ ℕ, 𝑘2 ∈ ℕ. 𝑘1 < 𝑛 ∧ 𝑘2 < 𝑛 ∧ 𝑘1 ≠ 𝑘2 ⇒ 𝑝 [𝑘1] ≠ 𝑝 [𝑘2]) ∧
(∀𝑘 ∈ ℕ.𝑘 < 𝑛 ⇒ 𝑎[𝑘] = 𝑏[𝑝 [𝑘]])

All inputs are legal; the specified result exists and is uniquely determined. 17/48

1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

18/48

The RISC Algorithm Language (RISCAL)
■ A system for formally modeling mathematical theories and algorithms.

□ Research Institute for Symbolic Computation (RISC), 2016–.
• http://www.risc.jku.at/research/formal/software/RISCAL

□ Implemented in Java with SWT library for the GUI.
• Tested under Linux only; freely available as open source (GPL3).

■ A language for the defining mathematical theories and algorithms.
□ A static type system with only finite types (of parameterized sizes).
□ Predicates, explicitly (also recursively) and implicitly def.d functions.
□ Theorems (universally quantified predicates expected to be true).
□ Procedures (also recursively defined).
□ Pre- and post-conditions, invariants, termination measures.

■ A framework for evaluating/executing all definitions.
□ Model checking: predicates, functions, theorems, procedures, annotations may

be evaluated/executed for all possible inputs.
□ All paths of a non-deterministic execution may be elaborated.
□ The execution/evaluation may be visualized.

Validating algorithms by automatically verifying finite approximations.

19/48

http://www.risc.jku.at/research/formal/software/RISCAL

The RISC Algorithm Language (RISCAL)

RISCAL divide.txt &

20/48

Using RISCAL
See also the (printed/online) “Tutorial and Reference Manual”.

■ Press button (or <Ctrl>-s) to save specification.
□ Automatically processes (parses and type-checks) specification.
□ Press button to re-process specification.

■ Choose values for undefined constants in specification.
□ Natural number for val const: N.
□ Default Value: used if no other value is specified.
□ Other Values: specific values for individual constants.

■ Select Operation from menu and then press button .
□ Executes operation for chosen constant values and all possible inputs.
□ Option Silent: result of operation is not printed.
□ Option Nondeterminism: all execution paths are taken.
□ Option Multi-threaded: multiple threads execute different inputs.
□ Press buttton to abort execution.

During evaluation all annotations (pre/postconditions, etc.) are checked. 21/48

Typing Mathematical Symbols
ASCII String Unicode Character
Int ℤ

Nat ℕ

:= :=

true ⊤
false ⊥
~ ¬
/\ ∧
\/ ∨
=> ⇒
<=> ⇔
forall ∀
exists ∃
sum

∑
product

∏

ASCII String Unicode Character
~= ≠

<= ≤
>= ≥
* ·
times ×
{} ∅
intersect ∩
union ∪
Intersect

⋂
Union

⋃
isin ∈
subseteq ⊆
<< ⟨
>> ⟩

Type the ASCII string and press <Ctrl>-# to get the Unicode character.
22/48

Example: Quotient and Remainder
Given naturals 𝑛 and 𝑚, compute the quotient 𝑞 and remainder 𝑟 of 𝑛 divided by 𝑚.

// the type of natural numbers less than equal N
val N: ℕ;
type Num = ℕ[N];

// the precondition of the computation
pred pre(n:Num, m:Num) ⇔ m ≠ 0;

// the postcondition, first formulation
pred post1(n:Num, m:Num, q:Num, r:Num) ⇔

n = m·q + r ∧
∀q0:Num, r0:Num.
n = m·q0 + r0 ⇒ r ≤ r0;

// the postcondition, second formulation
pred post2(n:Num, m:Num, q:Num, r:Num) ⇔

n = m·q + r ∧ r < m;

We will investigate this specification. 23/48

Example: Quotient and Remainder

// for all inputs that satisfy the precondition
// both formulations are equivalent:
// ∀n:Num, m:Num, q:Num, r:Num.
// pre(n, m) ⇒ (post1(n, m, q, r) ⇔ post2(n, m, q, r));
theorem postEquiv(n:Num, m:Num, q:Num, r:Num)

requires pre(n, m);
⇔ post1(n, m, q, r) ⇔ post2(n, m, q, r);

// we will thus use the simpler formulation from now on
pred post(n:Num, m:Num, q:Num, r:Num) ⇔ post2(n, m, q, r);

Check equivalence for all values that satisfy the precondition.

24/48

Example: Quotient and Remainder
Choose e.g. 𝑁 = 5.

■ Switch option Silent off:
Executing postEquiv(ℤ,ℤ,ℤ,ℤ) with all 1296 inputs.
Ignoring inadmissible inputs...
Run 6 of deterministic function postEquiv(0,1,0,0):
Result (0 ms): true
Run 7 of deterministic function postEquiv(1,1,0,0):
Result (0 ms): true
...
Run 1295 of deterministic function postEquiv(5,5,5,5):
Result (0 ms): true
Execution completed for ALL inputs (6314 ms, 1080 checked, 216 inadmissible).

■ Switch option Silent on:
Executing postEquiv(ℤ,ℤ,ℤ,ℤ) with all 1296 inputs.
Execution completed for ALL inputs (244 ms, 1080 checked, 216 inadmissible).

If theorem is false for some input, an error message is displayed.
25/48

Example: Quotient and Remainder

Drop precondition from theorem.

theorem postEquiv(n:Num, m:Num, q:Num, r:Num) ⇔
// requires pre(n, m);
post1(n, m, q, r) ⇔ post2(n, m, q, r);

Executing postEquiv(ℤ,ℤ,ℤ,ℤ) with all 1296 inputs.
Run 0 of deterministic function postEquiv(0,0,0,0):
ERROR in execution of postEquiv(0,0,0,0): evaluation of

postEquiv
at line 25 in file divide.txt:

theorem is not true
ERROR encountered in execution.

For 𝑛 = 0, 𝑚 = 0, 𝑞 = 0, 𝑟 = 0, the modified theorem is not true.

26/48

Visualizing the Formula Evaluation
Select 𝑁 = 1 and visualization option “Tree”.

Investigate the (pruned) evaluation tree to determine how the truth value of a
formula was derived (double click to zoom into/out of predicates). 27/48

Example: Quotient and Remainder
Switch option “Nondeterminism” on.

// 1. investigate whether the specified input/output combinations are as desired
fun quotremFun(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);
ensures post(n, m, result.1, result.2);

= choose q:Num, r:Num with post(n, m, q, r);

Executing quotremFun(ℤ,ℤ) with all 36 inputs.
Ignoring inadmissible inputs...
Branch 0:6 of nondeterministic function quotremFun(0,1):
Result (0 ms): [0,0]
...
Branch 1:35 of nondeterministic function quotremFun(5,5):
No more results (14 ms).
Execution completed for ALL inputs (413 ms, 30 checked, 6 inadmissible).

First validation by inspecting the values determined by output condition
(nondeterminism may produce for some inputs multiple outputs). 28/48

Example: Quotient and Remainder

// 2. check that some but not all inputs are allowed
theorem someInput() ⇔ ∃n:Num, m:Num. pre(n, m);
theorem notEveryInput() ⇔ ∃n:Num, m:Num. ¬pre(n, m);

Executing someInput().
Execution completed (0 ms).
Executing notEveryInput().
Execution completed (0 ms).

A very rough validation of the input condition.

29/48

Example: Quotient and Remainder
// 3. check whether for all inputs that satisfy the precondition
// there are some outputs that satisfy the postcondition
theorem someOutput(n:Num, m:Num)

requires pre(n, m);
⇔ ∃q:Num, r:Num. post(n, m, q, r);

// 4. check that not every output satisfies the postcondition
theorem notEveryOutput(n:Num, m:Num)

requires pre(n, m);
⇔ ∃q:Num, r:Num. ¬post(n, m, q, r);

Executing someOutput(ℤ,ℤ) with all 36 inputs.
Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).
Executing notEveryOutput(ℤ,ℤ) with all 36 inputs.
Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

A very rough validation of the output condition.

30/48

Example: Quotient and Remainder

// 5. check that the output is uniquely defined
// (optional, need not generally be the case)
theorem uniqueOutput(n:Num, m:Num)

requires pre(n, m);
⇔

∀q:Num, r:Num. post(n, m, q, r) ⇒
∀q0:Num, r0:Num. post(n, m, q0, r0) ⇒
q = q0 ∧ r = r0;

Executing uniqueOutput(ℤ,ℤ) with all 36 inputs.
Execution completed for ALL inputs (18 ms, 30 checked, 6 inadmissible).

The output condition indeed determines the outputs uniquely.

31/48

Validating the Specification of an Operation

Select operation quotRemFun and press the button “Show/Hide Tasks”.

Automatic generation of those formulas that validate a specification. 32/48

Example: Quotient and Remainder

Right-click to print definition of a formula, double-click to check it.

For every input, is postcondition true for only one output?

theorem _quotremFun_5_PostUnique(n:Num, m:Num)
requires pre(n, m);
⇔ ∀result:Tuple[Num,Num] with post(n, m, result.1, result.2).

(∀_result:Tuple[Num,Num] with let result = _result in
post(n, m, result.1, result.2). (result = _result));

Using N=5.
Type checking and translation completed.
Executing _quotremFun_5_PostUnique(ℤ,ℤ) with all 36 inputs.
Execution completed for ALL inputs (7 ms, 30 checked, 6 inadmissible).

The output is indeed uniquely defined by the output condition.

33/48

Example: Quotient and Remainder

// 6. check whether the algorithm satisfies the specification
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);
ensures let q=result.1, r=result.2 in post(n, m, q, r);

{
var q: Num = 0;
var r: Num = n;
while r ≥ m do
{

r := r-m;
q := q+1;

}
return ⟨q,r⟩;

}

Check whether the algorithm satisfies the specification.

34/48

Example: Quotient and Remainder
Executing quotRemProc(ℤ,ℤ) with all 36 inputs.
Ignoring inadmissible inputs...
Run 6 of deterministic function quotRemProc(0,1):
Result (0 ms): [0,0]
Run 7 of deterministic function quotRemProc(1,1):
Result (0 ms): [1,0]
...
Run 32 of deterministic function quotRemProc(2,5):
Result (0 ms): [0,2]
Run 33 of deterministic function quotRemProc(3,5):
Result (0 ms): [0,3]
Run 34 of deterministic function quotRemProc(4,5):
Result (0 ms): [0,4]
Run 35 of deterministic function quotRemProc(5,5):
Result (1 ms): [1,0]
Execution completed for ALL inputs (161 ms, 30 checked, 6 inadmissible).

A verification of the algorithm by checking all possible executions.
35/48

Example: Quotient and Remainder
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);
ensures post(n, m, result.1, result.2);

{
var q: Num = 0; var r: Num = n;
while r > m do // error!
{

r := r-m; q := q+1;
}
return ⟨q,r⟩;

}

Executing quotRemProc(ℤ,ℤ) with all 36 inputs.
ERROR in execution of quotRemProc(1,1): evaluation of

ensures let q = result.1, r = result.2 in post(n, m, q, r);
at line 65 in file divide.txt:

postcondition is violated by result [0,1]
ERROR encountered in execution.

A falsificaton of an incorrect algorithm. 36/48

Example: Sorting an Array
val N:Nat; val M:Nat;
type nat = Nat[M]; type array = Array[N,nat]; type index = Nat[N-1];

proc sort(a:array): array
ensures ∀i:nat. i < N-1 ⇒ result[i] ≤ result[i+1];
ensures ∃p:Array[N,index]. (∀i:index,j:index. i ≠ j ⇒ p[i] ≠ p[j]) ∧

(∀i:index. a[i] = result[p[i]]);
{

var b:array = a;
for var i:Nat[N]:=1; i<N; i:=i+1 do {

var x:nat := b[i];
var j:Int[-1,N] := i-1;
while j ≥ 0 ∧ b[j] > x do {

b[j+1] := b[j];
j := j-1;

}
b[j+1] := x;

}
return b;

} 37/48

Example: Sorting an Array
Using N=5.
Using M=5.
Type checking and translation completed.
Executing sort(Array[ℤ]) with all 7776 inputs.
1223 inputs (1223 checked, 0 inadmissible, 0 ignored)...
2026 inputs (2026 checked, 0 inadmissible, 0 ignored)...
...
5792 inputs (5792 checked, 0 inadmissible, 0 ignored)...
6118 inputs (6118 checked, 0 inadmissible, 0 ignored)...
6500 inputs (6500 checked, 0 inadmissible, 0 ignored)...
6788 inputs (6788 checked, 0 inadmissible, 0 ignored)...
7070 inputs (7070 checked, 0 inadmissible, 0 ignored)...
7354 inputs (7354 checked, 0 inadmissible, 0 ignored)...
7634 inputs (7634 checked, 0 inadmissible, 0 ignored)...
Execution completed for ALL inputs (32606 ms, 7776 checked, 0 inadmissible).
Not all nondeterministic branches may have been considered.

Also this algorithm can be automatically checked.
38/48

Model Checking versus Proving
Two fundamental techniques for validation/verification.

■ Model checking: processing a semantic model.
□ Fully automatic, no human interaction is required.
□ Completely possible only if the model is finite.
□ State space explosion: “finite” actually means “not too big”.

■ Proving: constructing a logical deduction.
□ Assumes a sound deduction calculus.
□ Also possible if the model is infinite.
□ Complexity of deduction is independent of size of model.
□ Many properties can be automatically proved (automated reasoners); in general,

however, interaction with a human is required (proof assistants).

While verifying the validity of a conjecture generally requires deduction, its
invalidity can be often quickly established by checking.

39/48

1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

40/48

Computational Systems

Programs are just special cases of “(computational) systems”.

■ Computational System
□ One or more active components.
□ Deterministic or nondeterministic behavior.
□ May or may not terminate.

■ Safety
□ “Nothing bad will ever happen.”
□ Partial correctness of programs: for every admissible input, if the program

terminates, its output does not violate the output condition.
■ Liveness

□ “Something good will eventually happen.”
□ Termination of programs: for every input, the program eventually terminates.

General goal is to establish the safety and liveness of computational systems.
41/48

Transition Systems

Any computational system can be modelled as a transition system 𝑇 = (𝑆, 𝐼, 𝑅).

■ State space 𝑆 = 𝑆1 × . . . × 𝑆𝑛: the set of all possible system states.
□ Determined by the possible values of system variables 𝑥1, . . . , 𝑥𝑛 with values

from (finite or infinite) domains 𝑆1, . . . , 𝑆𝑛.

■ Initial states 𝐼 ⊆ 𝑆: the possible starts of the execution of the system.
□ Typically defined by an a predicate 𝐼𝑥 on the system variables 𝑥1, . . . , 𝑥𝑛.

■ Transition relation 𝑅 ⊆ 𝑆 × 𝑆: the possible execution steps.
□ Typically defined by a predicate 𝑅𝑥,𝑥′ between the prestate values 𝑥 and the

poststate values 𝑥′ of the program variables.

Nondeterminism: for some prestate 𝑥 there may be multiple poststates 𝑥′.

42/48

Example
System 𝐶 = (𝑆, 𝐼, 𝑅) with counters 𝑥 und 𝑦 which may be independently incremented.

𝑦𝑥

+1 +1
𝑆 := Z × Z

𝐼 (𝑥, 𝑦) :⇔ 𝑥 = 𝑦 ∧ 𝑦 ≥ 0

𝑅(⟨𝑥, 𝑦⟩, ⟨𝑥′, 𝑦′⟩) :⇔
(𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦) ∨
(𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦 + 1)

■ Infinitely many starting states.

[𝑥 = 0, 𝑦 = 0], [𝑥 = 1, 𝑦 = 1], [𝑥 = 2, 𝑦 = 2], . . .
■ In each state two possibilities.

[𝑥 = 2, 𝑦 = 3] → [𝑥 = 3, 𝑦 = 3]
→ [𝑥 = 2, 𝑦 = 4]

A nondeterministic system.
43/48

System Runs
Transition system 𝑇 = (𝑆, 𝐼, 𝑅).

■ System run: (finite or infinite) sequence 𝑠0 → 𝑠1 → 𝑠2 → . . . of states in 𝑆.
□ 𝑠0 is initial: 𝐼 (𝑠0).
□ 𝑠𝑖 → 𝑠𝑖+1 ist a transition: 𝑅(𝑠0, 𝑠1).
□ If run stops in 𝑠𝑛, then 𝑠𝑛 has no successor: ¬𝑅(𝑠𝑛, 𝑠′), for all 𝑠′ ∈ 𝑆.

System run

𝑠0

Successors of 𝑠1𝑠2

𝑠1 Successors of 𝑠0

System runs can be understood as paths in a directed graph.
44/48

Example
System 𝐶 = (𝑆, 𝐼, 𝑅).

𝑆 := Z × Z

𝐼 (𝑥, 𝑦) :⇔ 𝑥 = 𝑦 ∧ 𝑦 ≥ 0

𝑅(⟨𝑥, 𝑦⟩, ⟨𝑥′, 𝑦′⟩) :⇔
(𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦) ∨
(𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦 + 1)

■ Safety: □(𝑥 ≥ 0 ∧ 𝑦 ≥ 0)
□ Both 𝑥 als 𝑦 never become negative.
□ True, because every system run has this property.

■ Liveness: ^𝑥 ≥ 1.
□ Variable 𝑥 eventually becomes greater equal 1.
□ False, because this system run does not have this property.

[𝑥 = 0, 𝑦 = 0] → [𝑥 = 0, 𝑦 = 1] → [𝑥 = 0, 𝑦 = 2] → [𝑥 = 0, 𝑦 = 3] → . . .

For establishing liveness properties, “unfair” system runs must be ruled out. 45/48

Verifying Safety

■ 𝑀 |= □𝐹.
□ Verify that formula 𝐹 is an invariant of system 𝑀.

■ 𝑀 = (𝑆, 𝐼, 𝑅).
□ 𝐼 (𝑠) :⇔ . . .

□ 𝑅(𝑠, 𝑠′) :⇔ 𝑅0 (𝑠, 𝑠′) ∨ 𝑅1 (𝑠, 𝑠′) ∨ . . . ∨ 𝑅𝑛−1 (𝑠, 𝑠′).
■ Proof by induction.

□ ∀𝑠. 𝐼 (𝑠) ⇒ 𝐹 (𝑠).
• 𝐹 holds in every initial state.

□ ∀𝑠, 𝑠′. 𝐹 (𝑠) ∧ 𝑅(𝑠, 𝑠′) ⇒ 𝐹 (𝑠′).
• Each transition preserves 𝐹.
• Reduces to a number of subproofs:

𝐹 (𝑠) ∧ 𝑅0 (𝑠, 𝑠′) ⇒ 𝐹 (𝑠′)
. . .

𝐹 (𝑠) ∧ 𝑅𝑛−1 (𝑠, 𝑠′) ⇒ 𝐹 (𝑠′)

The verification of a safety property by an induction proof. 46/48

Transition Systems in RISCAL
val N:ℕ;
type int = ℤ[-1,N];

shared system Counter
{

var x:int = 0; var y:int = 0;
invariant 0 ≤ x ∧ x < N ∧ 0 ≤ y ∧ y < N;

ltl □ [0 <= x ∧ x < N ∧ 0 ≤ y ∧ y < N];
ltl[fairness] (^[x ≥ 1]) ∧ (^[y ≥ 1]);

action incX() fairness weak;
{ x = if x < N-1 then x+1 else 0; }
action incY() fairness weak;
{ y = if y < N-1 then y+1 else 0; }

}

Fairness constraints also ensure liveness properties.
47/48

Transition Systems in RISCAL

Verification by state space exploration and/or induction proofs. 48/48

	Specifying Problems
	The RISC Algorithm Language (RISCAL)
	Modeling Computations

