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To whom honor is due....

These slides are based on a slide deck from

Prof. Dr. Armin Biere

from whom I took over this lecture.
He deserves thanks for his kind permission to use them.
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My Background – Embedded Real-time Computing
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Synchronisation Penalty

Fig. 10 of
Implementing Constrained Cyber-
Physical Systems with IEC 61499.
Yoong, Roop, and Salcic, 
http://dx.doi.org/10.1145/2362336.2
362345
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Need for Parallelization:
End of Moores Law on Single Core
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35 Years of Microprocessor Trend Data

Original data collected and plotted by M. 
Horowitz, F. Labonte, O. Shacham, K. 
Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Source: Chuck Moore, Data Processing in Exascale-Class Computer Systems, 2011
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Playstation 3: Cell Processor

Source: US Department of Defense

Source: Wipedia
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Overview Current CPU Architetures

⬛ Intel
⬜ i5: 6 P / 8 E
⬜ i7: 8 P / 12 E
⬜ i9: 8 P / 16 E

⬛ AMD
⬜ Ryzen: 4 – 96

⬛ Raspberry Pi
⬜ Since Mod 2: 4 

⬛ Apple
⬜ M1: 4 – 16 P / 4 E
⬜ M2: 4 – 16 P / 4 – 8 E
⬜ M3: 4 – 12 P / 4 E

⬛ Nvidia
⬜ Tesla: 128 – 18,176 Cuda cores
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Parallelizing Existing 
Algorithms



Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 10

Slow-Down in Parallel SAT

⬛ Parallel Multithreaded Satisfiability Solver: 
Design and Implementation.
Yulik Feldman, Nachum Dershowitz, Ziyad Hanna
http://dx.doi.org/10.1016/j.entcs.2004.10.020 

⬛ Paper is inconclusive about the reason for slow-
down

⬛ Probably more threads work on useless sub-tasks

⬛ Sharing clauses caching sub-computation 
increases pressure on memory system

⬛ Maybe search space splitting was not a good idea 
(guiding path)
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Low Speedup in Parallel SAT

⬛ http://www.birs.ca/events/2014/5-day-
workshops/14w5101/videos/watch/
201401221154-Sabharwal.html 
slide 4 of (video 3:30)

⬛ Sequential SAT algorithms produce proofs 
of large depth (= span)

⬛ So need new algorithms which produce low 
depth proofs
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Limiting Factor Memory Access?
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Memory System is Good Enough

⬛ Analysis of Portfolio-Style Parallel SAT Solving on Current 
Multi-Core Architectures.
Martin Aigner, Armin Biere, Christoph Kirsch, Aina Niemetz, 
Mathias Preiner.
http://fmv.jku.at/papers/AignerBiereKirschNiemetzPreiner-
POS13.pdf

⬛ Largest speed-up obtained by portfolio approach
⬜ Run different search strategies in parallel
⬜ If one terminates stop all
⬜ In practice share some important learned clauses caching 

sub-computations

⬛ Slow-down due to memory system?
⬜ Since memory system (memory / caches / bus) are shared 

in multi-core systems
⬜ Slow-down not too bad (particularly for solvers with small 

working set)
⬜ Even though considered memory-bound (but random 

access)
⬜ Waiting time for memory to arrive overlaps
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Clever Splitting

⬛ Marijn Heule, Oliver Kullmann, Siert Wieringa, Armin Biere.
Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads.
Haifa Verification Conference 2011: 50-65, Springer 2012
http://dx.doi.org/10.1007/978-3-642-34188-5_8 

⬛ Marijn J.H. Heule, Oliver Kullmann, and Victor Marek
Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer.
SAT 2016, 196-211, Springer 2016
http://dx.doi.org/10.1007/978-3-319-40970-2_15 

⬛ Everything is Bigger in Texas
https://www.cs.utexas.edu/~marijn/ptn/ 
JKU CS Colloquium 22. June 2016
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Theory on Parallelizabilty
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Work and Span

spanwork

12 7
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Amdahl’s Law with Work and Span

 T = work = sequential time Tp = wall-clock time p CPUs T∞ = wall-clock time ∞ CPUs

⬛ Speedup: SP = T /TP

⬛ Span … critical path (also called “makespan” in the context of scheduling)

⬛ f …  fraction of sequential work, thus

f = span / work

⬛ Reduce span as much as possible:
⬜ keep sequential blocks short!  
⬜ keep sequential dependencies short!

→ coarse grained locking is evil

→ (non-logarithmic) loops are evil

Simplified Amdahl’s law in terms of work and span: Sp ≤ 1/f = work /span
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Pebble Games

⬛ Given a directed acyclic graph with one sink.

⬛ Nodes of the graph have a pebble or not.

⬛ One step can either . . .
. . . remove a pebble from a node . . .
. . . or add a new pebble to a node without one, . . .
. . . but only if all its predecessor have a pebble.

⬛ Goal is to only have a pebble on the sink node.

⬛ What is the smallest maximum number of pebbles needed?

⬛ Common concept in complexity theory
⬜ Assuming intermediate results have to be stored
⬜ Relates to smallest p needed to reach maximum speed-up
⬜ This version (black pebble game) actually only gives space bounds
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Sum

⬛ Compute sum for n numbers xi in parallel

⬛ Sequential
⬜ y0 = 0, yi + 1 = yi + xi for i = 1 . . . n − 1
⬜ work = T = O(n) (n − 1 additions)
⬜ span = O(n) too
⬜ Since yi+1 depends on all previous yj with j ≤ i
⬜ thus no speed-up Sp = O(1)

⬛ Parallel
⬜ Associativity allows to regroup computation
⬜ Work = O(n) remains the same
⬜ Span = O(log n) reduces exponentially
⬜ Speed-up not ideal but Sn = O(n/ log n)
⬜ Note p > n does not make sense
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Prefix / Scan

⬛ Compute all sums        for all j = 1 . . . n and again n 
numbers xi in parallel

⬛ Sequential version as in previous slide

⬛ Parallel version needs a second depth O(log n) pass

⬛ Works even “in place” (first pass overwrites original xi)

⬛ But actual “wiring” complicated

⬛ Still span = O(log n)

⬛ Basic algorithmic idea for many “parallel” algorithms

⬛ Propagate and generate adders with prefix trees instead of 
ripple carry adder

s j=∑
1

j

xi



Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 21

Ripple-Carry-Adder
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Propagate-and-Generate Adder / Lookahead Adder
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Carry-Lookahead Adder
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Array Multiplier with final stage Ripple-Carry-Adder
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Wallace-Tree Multiplier with final stage Carry-Lookahead-Adder
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List Ranking / Pointer Jumping
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Sorting Networks

⬛ Circuits for sorting fixed number n of inputs
⬜ Basic “gate” compare-and-swap:

cmpswap(x, y) := (min(x, y), max (x, y))
⬜ interesting challenge to get smallest sorting network 

for n = 11 size only known to be between 33 and 35 compare-and-swap operations

⬛ Zero-one principle
⬜ correctness of sorting network (it sorts!) . . .

. . . only requires sorting 0 and 1 inputs (bits) . . .

. . . as long only compare-and-swap is used.

⬛ asymptotic complexity of algorithms
⬜ examples: Bitonic Sorting, Batcher Odd-Even Mergesort
⬜ with span = O(log2 n)
⬜ with work = O(n · log2 n) = T1
⬜ but sequential time T = O(n · log n)
⬜ maximum absolute speed-up Sn = O(n/ log n)
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Bubble Sort Example

⬛ Top-most i sorted after i phases

⬛ Lowest value only sorted after n − 1

⬛ Compare-and-swaps

⬛ work = O(n2)

⬛ span = O(n)

⬛ Looks like perfect speedup Sn = O(n) 
w.r.t. (bad) sequential algorithm

⬛ However, if we compare against Quicksort

T = O(n · log n)

we only get
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Batcher Odd-Even Mergesort

⬛ Basically as mergesort
⬜ Split input into two parts . . .

. . . sort parts recursively . . .

. . . merge sorted sequence.

⬛ Example: recursion for n = 8
⬜ outer block takes two sorted sequences of 

size 4 each
⬜ each inner block takes two sorted sequences 

of size 2 each
⬜ outer input sequences need to be sorted too
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Batcher Odd-Even Mergesort
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NC – Nick’s Class

⬛ f (n) polylogarithmic iff exists constant c such that f (n) = O(logc n)

⬛ NC is set of decision problems . . .

. . . which can be decided in polylogarithmic time . . .

. . . on a parallel computer with polynomial many processors, i.e., . . .

. . . exists constant c such that p = O(nk ).

⬛ NCc requires (parallel) computation time (span) in O(logc n) 

⬛  NC = ∪NC c
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L, NL, AC

⬛ L is set of decision problems solvable in logarithmic space determistically

⬛ NL is set of decision problems with logarithmic space non-determistically

⬛ NC = AC is the set of decision problems with logarithmic circuit complexity, i.e., . . .

. . . each input of size n can be decided by polynomial circuit with logarithmic depth in n, . . .

. . . made of gates with bounded (NC) or unbounded (AC) number of inputs

⬛ as before define NCc and ACc requiring O(logc n) depth (layers)
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P Completeness

NC1  L  NL  AC⊆ ⊆ ⊆ 1  NC⊆ 2  AC⊆ 2  NC⊆ 3  · · ·  NC = AC  P⊆ ⊆ ⊆

⬛ Using “logarithmic” reductions

⬛ It is commonly believed that NC ≠ P

⬛ Accordingly P-hard problems are supposed to be NOT “parallelizable”

⬛ Similar to the common belief that P ≠ NP
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Circuit Evaluation Problem

⬛ Given a boolean circuit with one output, and an evaluation to its inputs.

⬛ Evaluate the circuit and determine its output value for that input assignment.

⬛ This problem (deciding whether output yields one) is P-complete . . .

. . . and thus considered not to be parallelizable.

⬛ Thus evaluating a function can not be done “effectively” in parallel.

⬛ One step of simulation or constraint propagation are not parallelizable! (?)
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Parallel Design Patterns
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Guidelines and Methodologies for Implementing Parallel 
Programs
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Examples from 
Real-Time Domain
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Signal Processing Pipeline

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016). 
https://doi.org/10.1007/s10766-016-0432-7
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Control Program of BAUER MC 128

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016). 
https://doi.org/10.1007/s10766-016-0432-7

Source: BAUER Maschinen GmbH 
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Control Program of BAUER MC 128

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016). 
https://doi.org/10.1007/s10766-016-0432-7
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Thank you!

Univ.-Prof. Dr. Alois Zoitl, alois.zoitl@jku.at
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