
LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

PARALLEL COMPUTING
Algorithms and Complexity

Univ.-Prof. Dr. Alois Zoitl

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 2

To whom honor is due....

These slides are based on a slide deck from

Prof. Dr. Armin Biere

from whom I took over this lecture.
He deserves thanks for his kind permission to use them.

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 3

My Background – Embedded Real-time Computing

FORTE

External Event
Manager

Event Chain
Executor

Application Area

Resource 1

SIFB

FBFB

Resource n

SIFB

SIFB

FORTE Hardware/System Abstraction

Thread/Task,
Mutex, Semaphore

Network
IO

Access
Memory InterruptsTimer

Device
Management

Type Library
FBs

Resources

Data Types

Eclipse 4diac: https://www.eclipse.dev/4diac

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 4

Synchronisation Penalty

Fig. 10 of
Implementing Constrained Cyber-
Physical Systems with IEC 61499.
Yoong, Roop, and Salcic,
http://dx.doi.org/10.1145/2362336.2
362345

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 5

Need for Parallelization:
End of Moores Law on Single Core

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 6

35 Years of Microprocessor Trend Data

Original data collected and plotted by M.
Horowitz, F. Labonte, O. Shacham, K.
Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Source: Chuck Moore, Data Processing in Exascale-Class Computer Systems, 2011

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 7

Playstation 3: Cell Processor

Source: US Department of Defense

Source: Wipedia

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 8

Overview Current CPU Architetures

⬛ Intel
⬜ i5: 6 P / 8 E
⬜ i7: 8 P / 12 E
⬜ i9: 8 P / 16 E

⬛ AMD
⬜ Ryzen: 4 – 96

⬛ Raspberry Pi
⬜ Since Mod 2: 4

⬛ Apple
⬜ M1: 4 – 16 P / 4 E
⬜ M2: 4 – 16 P / 4 – 8 E
⬜ M3: 4 – 12 P / 4 E

⬛ Nvidia
⬜ Tesla: 128 – 18,176 Cuda cores

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 9

Parallelizing Existing
Algorithms

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 10

Slow-Down in Parallel SAT

⬛ Parallel Multithreaded Satisfiability Solver:
Design and Implementation.
Yulik Feldman, Nachum Dershowitz, Ziyad Hanna
http://dx.doi.org/10.1016/j.entcs.2004.10.020

⬛ Paper is inconclusive about the reason for slow-
down

⬛ Probably more threads work on useless sub-tasks

⬛ Sharing clauses caching sub-computation
increases pressure on memory system

⬛ Maybe search space splitting was not a good idea
(guiding path)

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 11

Low Speedup in Parallel SAT

⬛ http://www.birs.ca/events/2014/5-day-
workshops/14w5101/videos/watch/
201401221154-Sabharwal.html
slide 4 of (video 3:30)

⬛ Sequential SAT algorithms produce proofs
of large depth (= span)

⬛ So need new algorithms which produce low
depth proofs

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 12

Limiting Factor Memory Access?

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 13

Memory System is Good Enough

⬛ Analysis of Portfolio-Style Parallel SAT Solving on Current
Multi-Core Architectures.
Martin Aigner, Armin Biere, Christoph Kirsch, Aina Niemetz,
Mathias Preiner.
http://fmv.jku.at/papers/AignerBiereKirschNiemetzPreiner-
POS13.pdf

⬛ Largest speed-up obtained by portfolio approach
⬜ Run different search strategies in parallel
⬜ If one terminates stop all
⬜ In practice share some important learned clauses caching

sub-computations

⬛ Slow-down due to memory system?
⬜ Since memory system (memory / caches / bus) are shared

in multi-core systems
⬜ Slow-down not too bad (particularly for solvers with small

working set)
⬜ Even though considered memory-bound (but random

access)
⬜ Waiting time for memory to arrive overlaps

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 14

Clever Splitting

⬛ Marijn Heule, Oliver Kullmann, Siert Wieringa, Armin Biere.
Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads.
Haifa Verification Conference 2011: 50-65, Springer 2012
http://dx.doi.org/10.1007/978-3-642-34188-5_8

⬛ Marijn J.H. Heule, Oliver Kullmann, and Victor Marek
Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer.
SAT 2016, 196-211, Springer 2016
http://dx.doi.org/10.1007/978-3-319-40970-2_15

⬛ Everything is Bigger in Texas
https://www.cs.utexas.edu/~marijn/ptn/
JKU CS Colloquium 22. June 2016

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 15

Theory on Parallelizabilty

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 16

Work and Span

spanwork

12 7

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 17

Amdahl’s Law with Work and Span

 T = work = sequential time Tp = wall-clock time p CPUs T∞ = wall-clock time ∞ CPUs

⬛ Speedup: SP = T /TP

⬛ Span … critical path (also called “makespan” in the context of scheduling)

⬛ f … fraction of sequential work, thus

f = span / work

⬛ Reduce span as much as possible:
⬜ keep sequential blocks short!
⬜ keep sequential dependencies short!

→ coarse grained locking is evil

→ (non-logarithmic) loops are evil

Simplified Amdahl’s law in terms of work and span: Sp ≤ 1/f = work /span

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 18

Pebble Games

⬛ Given a directed acyclic graph with one sink.

⬛ Nodes of the graph have a pebble or not.

⬛ One step can either . . .
. . . remove a pebble from a node . . .
. . . or add a new pebble to a node without one, . . .
. . . but only if all its predecessor have a pebble.

⬛ Goal is to only have a pebble on the sink node.

⬛ What is the smallest maximum number of pebbles needed?

⬛ Common concept in complexity theory
⬜ Assuming intermediate results have to be stored
⬜ Relates to smallest p needed to reach maximum speed-up
⬜ This version (black pebble game) actually only gives space bounds

1

2

3

4 5

5−

6

3−

6−

8−

8−

B−

9−

B−

C−C−

A− 7

8
9

A B

C

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 19

Sum

⬛ Compute sum for n numbers xi in parallel

⬛ Sequential
⬜ y0 = 0, yi + 1 = yi + xi for i = 1 . . . n − 1
⬜ work = T = O(n) (n − 1 additions)
⬜ span = O(n) too
⬜ Since yi+1 depends on all previous yj with j ≤ i
⬜ thus no speed-up Sp = O(1)

⬛ Parallel
⬜ Associativity allows to regroup computation
⬜ Work = O(n) remains the same
⬜ Span = O(log n) reduces exponentially
⬜ Speed-up not ideal but Sn = O(n/ log n)
⬜ Note p > n does not make sense

∑
1

n

xi
x3 x4 x5 x6 x7 x8x2

2

1
3

1
4

1
5

1
6

1
7

1
8

1

Σ

Σ

Σ

Σ

Σ

Σ

Σ

x1

x3 x4 x6 x7 x8x5

8

7Σ

x2x1

Σ

8

1

Σ

Σ

Σ
2

1 3

4

4

1

5

6

8

5Σ

Σ

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 20

Prefix / Scan

⬛ Compute all sums for all j = 1 . . . n and again n
numbers xi in parallel

⬛ Sequential version as in previous slide

⬛ Parallel version needs a second depth O(log n) pass

⬛ Works even “in place” (first pass overwrites original xi)

⬛ But actual “wiring” complicated

⬛ Still span = O(log n)

⬛ Basic algorithmic idea for many “parallel” algorithms

⬛ Propagate and generate adders with prefix trees instead of
ripple carry adder

s j=∑
1

j

xi

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 21

Ripple-Carry-Adder

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 22

Propagate-and-Generate Adder / Lookahead Adder

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 23

Carry-Lookahead Adder

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 24

Array Multiplier with final stage Ripple-Carry-Adder

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 25

Wallace-Tree Multiplier with final stage Carry-Lookahead-Adder

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 26

List Ranking / Pointer Jumping

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 27

Sorting Networks

⬛ Circuits for sorting fixed number n of inputs
⬜ Basic “gate” compare-and-swap:

cmpswap(x, y) := (min(x, y), max (x, y))
⬜ interesting challenge to get smallest sorting network

for n = 11 size only known to be between 33 and 35 compare-and-swap operations

⬛ Zero-one principle
⬜ correctness of sorting network (it sorts!) . . .

. . . only requires sorting 0 and 1 inputs (bits) . . .

. . . as long only compare-and-swap is used.

⬛ asymptotic complexity of algorithms
⬜ examples: Bitonic Sorting, Batcher Odd-Even Mergesort
⬜ with span = O(log2 n)
⬜ with work = O(n · log2 n) = T1
⬜ but sequential time T = O(n · log n)
⬜ maximum absolute speed-up Sn = O(n/ log n)

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 28

Bubble Sort Example

⬛ Top-most i sorted after i phases

⬛ Lowest value only sorted after n − 1

⬛ Compare-and-swaps

⬛ work = O(n2)

⬛ span = O(n)

⬛ Looks like perfect speedup Sn = O(n)
w.r.t. (bad) sequential algorithm

⬛ However, if we compare against Quicksort

T = O(n · log n)

we only get

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 29

Batcher Odd-Even Mergesort

⬛ Basically as mergesort
⬜ Split input into two parts . . .

. . . sort parts recursively . . .

. . . merge sorted sequence.

⬛ Example: recursion for n = 8
⬜ outer block takes two sorted sequences of

size 4 each
⬜ each inner block takes two sorted sequences

of size 2 each
⬜ outer input sequences need to be sorted too

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 30

Batcher Odd-Even Mergesort

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 31

NC – Nick’s Class

⬛ f (n) polylogarithmic iff exists constant c such that f (n) = O(logc n)

⬛ NC is set of decision problems . . .

. . . which can be decided in polylogarithmic time . . .

. . . on a parallel computer with polynomial many processors, i.e., . . .

. . . exists constant c such that p = O(nk).

⬛ NCc requires (parallel) computation time (span) in O(logc n)

⬛ NC = ∪NC c

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 32

L, NL, AC

⬛ L is set of decision problems solvable in logarithmic space determistically

⬛ NL is set of decision problems with logarithmic space non-determistically

⬛ NC = AC is the set of decision problems with logarithmic circuit complexity, i.e., . . .

. . . each input of size n can be decided by polynomial circuit with logarithmic depth in n, . . .

. . . made of gates with bounded (NC) or unbounded (AC) number of inputs

⬛ as before define NCc and ACc requiring O(logc n) depth (layers)

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 33

P Completeness

NC1 L NL AC⊆ ⊆ ⊆ 1 NC⊆ 2 AC⊆ 2 NC⊆ 3 · · · NC = AC P⊆ ⊆ ⊆

⬛ Using “logarithmic” reductions

⬛ It is commonly believed that NC ≠ P

⬛ Accordingly P-hard problems are supposed to be NOT “parallelizable”

⬛ Similar to the common belief that P ≠ NP

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 34

Circuit Evaluation Problem

⬛ Given a boolean circuit with one output, and an evaluation to its inputs.

⬛ Evaluate the circuit and determine its output value for that input assignment.

⬛ This problem (deciding whether output yields one) is P-complete . . .

. . . and thus considered not to be parallelizable.

⬛ Thus evaluating a function can not be done “effectively” in parallel.

⬛ One step of simulation or constraint propagation are not parallelizable! (?)

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 35

Parallel Design Patterns

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 36

Guidelines and Methodologies for Implementing Parallel
Programs

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 37

Examples from
Real-Time Domain

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 38

Signal Processing Pipeline

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016).
https://doi.org/10.1007/s10766-016-0432-7

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 39

Control Program of BAUER MC 128

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016).
https://doi.org/10.1007/s10766-016-0432-7

Source: BAUER Maschinen GmbH

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 40

Control Program of BAUER MC 128

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296–1336 (2016).
https://doi.org/10.1007/s10766-016-0432-7

LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

Thank you!

Univ.-Prof. Dr. Alois Zoitl, alois.zoitl@jku.at

	LIT CPS Lab
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

