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To whom honor is due....

These slides are based on a slide deck from
Prof. Dr. Armin Biere

from whom | took over this lecture.
He deserves thanks for his kind permission to use them.
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My Background — Embedded Real-time Computing

FORTE

Device Application Area

Management Event Chain

Resource 1 Resource n Executor

Type Library —

i - - - %

External Event
Data Types Manager

: 10 Thread/Task,
Timer Memory - Interrupts Network Mutex, Semaphore

FORTE Hardware/System Abstraction

Eclipse 4diac: https://www.eclipse.dev/4diac
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Synchronisation Penalty

Flg 10 of 18
Implementing Constrained Cyber-
Physical Systems with IEC 61499.
Yoong, Roop, and Salcic, "
http://dx.doi.org/10.1145/2362336.2 1
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Need for Parallelization:
End of Moores Law on Single Core
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35 Years of Microprocessor Trend Data
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Original data collected and plotted by M.
Horowitz, F. Labonte, O. Shacham, K.
Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Source: Chuck Moore, Data Processing in Exascale-Class Computer Systems, 2011
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Playstation 3: Cell Processor

SPE

SXU

LS

ON-chip coherent bus (up to 96 bytes per cycle)

L2 PPE Memory Bus interface
controller controller
? ¢ Power
»| core Dual Rambus Rambus :
L1 < XDR FlexIO
Source: US Department of Defense

Source: Wipedia
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Overview Current CPU Architetures

M Intel Bl Apple
[1i5:6P/8E [IM1:4-16P/4E
Ji7:8P/12E [IM2:4-16P/4-8E
[J19:8P/16 E [IM3:4-12P/4E

B AMD B Nvidia
[]1 Ryzen: 4 — 96 [] Tesla: 128 — 18,176 Cuda cores

B Raspberry Pi
[ ] Since Mod 2: 4
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Parallelizing Existing
Algorithms
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Slow-Down in Parallel SAT

B Parallel Multithreaded Satisfiability Solver:

Table 2

Design and Implementation.

Yulik Feldman, Nachum Dershowitz, Ziyad Hanna

http://dx.doi.org/10.1016/j.entcs.2004.10.020

B Paper is inconclusive about the reason for slow-

down

B Probably more threads work on useless sub-tasks

B Sharing clauses caching sub-computation

iIncreases pressure on memaory system

Performance of SAT solver with different numbers of working threacds

Configuration | One | Two | Three | Four | Four:One
A 13 15 61 29 6.8
B 20 21 42 47 2.4
C 14 16 19 22 1.6
D 13 15 14 15 1.2
E 7 7 7 10 1.4
F bl 20 27 53 0.0
G G 55 195 165 28.0
H 6 52 86 107 17.8

B Maybe search space splitting was not a good idea
(guiding path)
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Low Speedup in Parallel SAT

B http://www.birs.ca/events/2014/5-day-
workshops/14w5101/videos/watch/
201401221154-Sabharwal.html
slide 4 of (video 3:30)

B Sequential SAT algorithms produce proofs
of large depth (= span)

B So need new algorithms which produce low
depth proofs

Speedup(geometric average)
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Limiting Factor Memory Access?

On Core CPU L1/2 Cache ~1ns

On Die L3 Cache ~10 ns

PCle NVMe BE=ToIlN\V VIl —25,000 ns (25 us)
SAS, SATA

SIS PARsshE ~100,000 ns (100 us)

SAS, SATA Fast HDD ~5,000,000 ns (5 ms)
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Memory System is Good Enough

B Analysis of Portfolio-Style Parallel SAT Solving on Current P eopomisar ' T T
Multi-Core Architectures. wol e T . 9
Martin Aigner, Armin Biere, Christoph Kirsch, Aina Niemetz, e
Mathias Preiner. 20 f
http://fmv.jku.at/papers/AignerBiereKirschNiemetzPreiner- N R —

POS13.pdf g
B Largest speed-up obtained by portfolio approach -
[J Run different search strategies in parallel 100 -
[] If one terminates stop all . i ]
[J In practice share some important learned clauses caching *r | ) 7
sub-computations oL . . : : . - |

number of parallel identical jobs

B Slow-down due to memory system?

[1 Since memory System (memory /| caches / bus) are shared Figu.re 8: Absolute runtime required for an increasing number of para_Lllcl jobs solving the
in multi-core SyStemS narain-vpn-clauses-10 benchmark on the amd-opteron-2350-8vcores machine.

] Slow-down not too bad (particularly for solvers with small
working set)

[0 Even though considered memory-bound (but random
access)

(] Waiting time for memory to arrive overlaps
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Clever Splitting

Bl Marijn Heule, Oliver Kullmann, Siert Wieringa, Armin Biere.
Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads.
Haifa Verification Conference 2011: 50-65, Springer 2012
http://dx.doi.org/10.1007/978-3-642-34188-5 8

Bl Marijn J.H. Heule, Oliver Kullmann, and Victor Marek
Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer.
SAT 2016, 196-211, Springer 2016
http://dx.doi.org/10.1007/978-3-319-40970-2_15

M Everything is Bigger in Texas
https://www.cs.utexas.edu/~marijn/ptn/
JKU CS Colloquium 22. June 2016
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Theory on Parallelizabilty
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Work and Span
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Amdahl’s Law with Work and Span

T = work = sequential time Tp = wall-clock time p CPUs  Te = wall-clock time co CPUs

B Speedup: Sp=T/Ts
B Span ... critical path (also called “makespan” in the context of scheduling)
B /... fraction of sequential work, thus

f = span / work

Simplified Amdahl’s law in terms of work and span: Sp < 1/f = work /span

B Reduce span as much as possible:
[] keep sequential blocks short! — coarse grained locking is evil
[] keep sequential dependencies short! — (non-logarithmic) loops are evil
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Pebble Games

B Given a directed acyclic graph with one sink.
B Nodes of the graph have a pebble or not.

B One step can either . . .
... remove a pebble from a node . ..
... oradd a new pebble to a node without one, . ..
... but only if all its predecessor have a pebble.

B Goal is to only have a pebble on the sink node.
B What is the smallest maximum number of pebbles needed?

B Common concept in complexity theory
[] Assuming intermediate results have to be stored
[] Relates to smallest p needed to reach maximum speed-up
[] This version (black pebble game) actually only gives space bounds

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
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Sum

n
B Compute sum Z X; for n numbers xi in parallel
1

Bl Sequential
Oyo=0,yi+1=yi+xfori=1...n-1
[Iwork =T =0O(n) (n — 1 additions)

[1 span = O(n) too
[] Since yi+1 depends on all previous y; with | < |
[] thus no speed-up Sp = O(1)

B Parallel
[] Associativity allows to regroup computation
[] Work = O(n) remains the same
[1 Span = O(log n) reduces exponentially
[] Speed-up not ideal but S, = O(n/ log n)
[] Note p > n does not make sense
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Prefix | Scan

j
B Compute all sums S,:Z X;forallj=1...nandagainn
numbers x; in parallel !

B Sequential version as in previous slide

B Parallel version needs a second depth O(log n) pass
B Works even “in place” (first pass overwrites original x;)
B But actual “wiring” complicated

M Still span = O(log n)

B Basic algorithmic idea for many “parallel” algorithms

B Propagate and generate adders with prefix trees instead of
ripple carry adder
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Ripple-Carry-Adder

Sq

Ci4+1 =

S0

S1

52

S3

5S4

55

56
S7

JXU

Ti Dy D
TiVYi + XiCi + Yi G

Co

= Zo D Yo C1

r1 Dy1 D C2
T2 D Y2 D C2 (6
x3 D ys Dcs C4
Ta D Yys D cy Cs
5 D Ys D cs Cé
Te D Ye D Co C7

= 7 Dyt Dcy Cs

work = O(n)

sum
carry

= 0

o Yo

T1Yyr +T1c1+ Y1 ci
T2Y2 + T2C2 1+ Y2 C2
T3Ys + T3C3 + Y33
T4Ya + TacCq + YaCa
T5Ys5 + Ts C5 + Y5 Cs
6 Y6 1+ Te C6 1 Yo Cé

— Tr P+ Ty er+ yrey

span = O(n)

LINZ INSTITUTE
OF TECHNOLOGY

CYBER-PHYSICAL
SYSTEMS LAB

Parallel Computing - Algorithms and Complexity
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Propagate-and-Generate Adder /| Lookahead Adder

Di

Ci+1 —

Co —

C1

C2

C3

C4

Cs

Ce

C7

C8

work =

JXU

T+ Yi propagate
TiYi generate
gi +pi ¢ new carry computation formula
g1
g2 + p2 g1
gs + p3 g2 + P3 P2 g1

g1 + pPags +  Ppap3 g2
g5 + P594 + DP5Pags + PsPapsge
ge +
gr +

O(n*) span = O(log n)

LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY

HH P4 P3 P2 g1
+ P5Pap3 P2 g1
_I_

0

go

P1 go

P2 P1 go
P3 P2 P1 9o
+ P4 P3 P2 P1 go
+ D5 D4 P3 P2 D1 Go
P6 P5 P4 P3 P2 P1 go

+ + +

+ ... D7D6 P5 P4 P3 P2 P1 go

assuming n-ary gates otherwise

SYSTEMS LAB Parallel Computing - Algorithms and Complexity

work = O(n3)

© 2024 JKU, Zoitl
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Carry-Lookahead Adder

work = O(n®)  span = O(log n)

using prefix / scan computation otherwise work remains ©(n3) for binary AND gates

J z U LINZ INSTITUTE CYBER-PHYSICAL
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Array Multiplier with final stage Ripple-Carry-Adder

work = O(n?)

span = O(n)
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Wallace-Tree Multiplier with final stage Carry-Lookahead-Adder

work = O(n*)  span = O(log n)

J z U LINZ INSTITUTE CYBER-PHYSICAL
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List Ranking / Pointer Jumping

JXU

LINZ INSTITUTE
OF TECHNOLOGY

CYBER-PHYSICAL
SYSTEMS LAB

determine distance to head of list:

Parallel Computing - Algorithms and Complexity

1

as long there is i with next[i] # L:

val[i] += wval[next[i]]

next[i] = next[next|i]]

© 2024 JKU, Zoitl
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Sorting Networks

B Circuits for sorting fixed number n of inputs
[] Basic “gate” compare-and-swap:

cmpswap(x, y) := (min(x, y), max (x, y))
[] interesting challenge to get smallest sorting network

for n = 11 size only known to be between 33 and 35 compare-and-swap operations

B Zero-one principle
[1 correctness of sorting network (it sorts!) . . .
... only requires sorting 0 and 1 inputs (bits) . . .
... as long only compare-and-swap is used.

B asymptotic complexity of algorithms
[1 examples: Bitonic Sorting, Batcher Odd-Even Mergesort
1 with span = O(log? n)
1 with work = O(n - log?n) = T1
[1 but sequential time T = O(n - log n)
[1 maximum absolute speed-up S, = O(n/log n)

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
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max(x,y)
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Bubble Sort Example

B Top-most i sorted after i phases
B Lowest value only sorted aftern - 1

I B Compare-and-swaps

B work = O(n°)

B span =O(n)

B Looks like perfect speedup S, = O(n)
I ) I w.r.t. (bad) sequential algorithm

I ) B However, if we compare against Quicksort
T=0(n -log n)

we only get

Sn = (9(&5”) = O(logn) < O(n/logn)

——
" —e
*—e
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Batcher Odd-Even Mergesort

JXU

LINZ INSTITUTE
OF TECHNOLOGY

CYBER-PHYSICAL
SYSTEMS LAB

B Basically as mergesort
[] Split input into two parts . . .
... sort parts recursively . . .
.. . merge sorted sequence.

B Example: recursion forn =8
[1 outer block takes two sorted sequences of
. Size 4 each

— [] each inner block takes two sorted sequences

of size 2 each
. [] outer input sequences need to be sorted too

Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 29



Batcher Odd-Even Mergesort

L X

I I I I I e N B

o — —0 o—9 o—
I

o —=e 6—=0 | 0—e o—0
I
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NC - Nick’s Class

M f (n) polylogarithmic iff exists constant ¢ such that f (n) = O(log° n)

B NC is set of decision problems . . .
.. . which can be decided in polylogarithmic time . . .

... on a parallel computer with polynomial many processors, i.e., . . .

.. . exists constant ¢ such that p = O(n*).

B NCc requires (parallel) computation time (span) in O(log° n)

B NC = UNCS

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
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L, NL, AC

B L is set of decision problems solvable in logarithmic space determistically
B NL is set of decision problems with logarithmic space non-determistically

B NC = AC is the set of decision problems with logarithmic circuit complexity, i.e., . ..

.. . each input of size n can be decided by polynomial circuit with logarithmic depth inn, . . .

. .. made of gates with bounded (NC) or unbounded (AC) number of inputs

B as before define NC*¢ and ACe® requiring O(log® n) depth (layers)

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
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P Completeness

NC!CLCNLCAC!CNC?2CAC?2CNC*Cc---CcNC=ACCP
B Using “logarithmic” reductions
M It is commonly believed that NC # P
B Accordingly P-hard problems are supposed to be NOT “parallelizable”

B Similar to the common belief that P # NP

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
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Circuit Evaluation Problem

B Given a boolean circuit with one output, and an evaluation to its inputs.

B Evaluate the circuit and determine its output value for that input assignment.

B This problem (deciding whether output yields one) is P-complete . . .
... and thus considered not to be parallelizable.

B Thus evaluating a function can not be done “effectively” in parallel.

B One step of simulation or constraint propagation are not parallelizable! (?)

J ¥ U LINZ INSTITUTE CYBER-PHYSICAL
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Parallel Design Patterns
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Guidelines and Methodologies for Implementing Parallel
Programs

DESIGNING zn¢ BUILDING PATTERNS
PARALLEL PROGRAMS FOR PARALLEL

Concepts and Tools for

Parallel Software Engineering

Sy,

Ian Foster

J z U LINZ INSTITUTE CYBER-PHYSICAL
OF TECHNOLOGY | SYSTEMS LAB Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 36



Examples from
Real-Time Domain
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Signal Processing Pipeline

Inout Input
e A=FFT(8) 5:51:1*1:1::1”

- D=SUM(C)
sassssassssssasnsiien —
lI=I=I=I}I=I=l}l}l=l;l='l=l{l='llI mm I'IEI;I‘I'I:IEI:I;IEI{I‘I'}:I:I‘I:I':III BER A i-:E::: [III{I;Ill%l{l:ltli'l:I}l{l:'l==I ppey d IFFT(D)
A | - - Ll L1 1 ::EEEE A L Ll L1l Ll Ll L ::EEEE EEEEEE A = Ll - - L ::ggzz A A
T T O A
FHHH T N HHH ‘ T ‘
3 H-THH T HHIHH S
N HHHH N T T
C R i iz
::EE" - T "TV i L
s < M—> P
v £ Lv L C=A*B -
< M—> < M—> — 7 3 40
S\ \<
(&]
2 30 — .
e === |nitilization (seq.)
: 20 ==4==Create FFT input (seq.)
— g / A*B to d (seq.)
ipeline S
4 10 Zt;A (pa:{allel)
- — - =P Next resu
' ' Create <Data / - el
.——~ Initialization — FFT — Parallelism> =L ) 0+l p . ; T T T ;
\ ) aloA 0 2 4 6 8 10 12 14 16 18 20

Cores
Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296-1336 (2016).

https://doi.org/10.1007/s10766-016-0432-7
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OF TECHNOLOGY

CYBER-PHYSICAL
SYSTEMS LAB Parallel Computing - Algorithms and Complexity © 2024 JKU, Zoitl 38




Control Program of BAUER MC 128

Application - Software

BAUER MC

Middleware

Periodic
Tasks

Duty-Cycle Cranes

Energy-Efficient
Power

BIOS (not developed by BAUER)

MC Line

ESX-3XL

Foundation Crane

® - Initialisation

[ ] {  Foundation Crane S

[while(1]]

Task Parallelism
main_loop
vBatriab
Watchdog
viCan2Communication
vCan3Communication
viCan4dCommunicaticn
vTiefenmessung
vTiefenmeassung2
Fault Handling
Ewverything Else

[else]
@

Source: BAUER Maschinen GmbH

CYBER-PHYSICAL
SYSTEMS LAB Parallel Computing - Algorithms and Complexity

I U LTS,

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296—-1336 (2016).
https://doi.org/10.1007/s10766-016-0432-7
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Control Program of BAUER MC 128

35

3
w30
% a 2,5
> 25 3
c 8 2
g 20 0%_
= 1,5
c 15 E / \
— 10 z
O 05
5 )
= ¥
0_ 0 T
1 4 8 1 4 8
Cores Cores

(a) (b)

Fig. 17 Evaluation results: static WCETs and WCET speedup, a WCET for 1, 4 and 8 cores. At the 4 core
version, the WCET falls to around 40 % of the sequential version, while it rises to a multiple at the 8 core
version, b WCET Speedup for 1, 4 und 8 cores. At 4 cores, the speedup reaches around 2.4, while at 8 cores
a slowdown to around 0.15 shows up

Frieb, M., Jahr, R., Ozaktas, H. et al. A Parallelization Approach for Hard Real-Time Systems and Its Application on Two Industrial Programs. Int J Parallel Prog 44, 1296—-1336 (2016).
https://doi.org/10.1007/s10766-016-0432-7
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Thank you!

Univ.-Prof. Dr. Alois Zoitl, alois.zoitl@jku.at

LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz
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