
JKU/Dynatrace Co-Innovation Lab
LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

Adriano Vogel

Parallel Computing with Modern C++

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

Parallelism is everywhere

● Servers
● Computers
● Smartphones

2

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Why Parallel Computing?

High performance (e.g., low execution time, high throughput, low latency)
Scalability
Quality of services
Reduce the energy consumption?

- Less cost

- More sustainable

But how is it possible?

3

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Why Parallel Computing?

Power consumption reduction obtained with parallel execution compared to the sequential ones
(Source [3])

How is it possible?

4

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Why Parallel Computing?

Power consumption reduction obtained with parallel execution compared to the sequential ones

Source [3]

5

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Concurrent vs. Parallel

Tasks (A) and (B) are only concurrent. The others are concurrent and parallel

6

Source [1]

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

Task Parallelism

7

Source [1]

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

Data parallelism

8

Source [1]

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

How do we achieve parallelism in computing applications?
We (still) need to model and program our applications to execute in parallel (in the vast majority of
cases).
Software must be designed to run in parallel: “The free lunch is over.” [Ref 5]
Different ways were already presented in this course.
Today we will see how to parallel computing works in modern C++ using the standard C++ threads
Requirements: Familiarity with modern C++ features and access to C++17 compiler
Why C++?

9

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

Why C++?
A great starting point to parallel computing

10

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

Why C++?
It is efficient!

11

Read more on Zeuch et al. Analyzing Efficient Stream Processing on Modern Hardware

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing - Concurrency in C++

C++11 standard provided support for concurrency through multithreading (Standard C++ Thread
Library)
Improved support with C++17 and C++20
No major updates seen (until now) in C++23

12

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

What are threads?

● Hardware threads

● Software threads

● std::threads

13

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Source: https://techlarry.github.io/OS/

Parallel Computing

What are threads?

● Hardware threads

● Software threads

● std::threads

14

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

What if there are created more threads than software threads or hardware threads?

15

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ threads

Code examples with C++ thread class
Implemented with RAII

16

#include <iostream> // std::cout

#include <thread> // std::thread

void foo()

{

 // do stuff...

}

void bar(int x)

{

 // do stuff...

}

int main()

{

 std::thread first (foo); // spawn new thread that calls foo()

 std::thread second (bar,0); // spawn new thread that calls bar(0)

 std::cout << "main, foo and bar now execute concurrently...\n";

 // synchronize threads:

 first.join(); // pauses until first finishes

 second.join(); // pauses until second finishes

 std::cout << "foo and bar completed.\n";

 return 0;

}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ threads

Many other features <https://cplusplus.com/reference/thread/thread/>

● arguments
● change of ownership
● running in background
● identifying threads

● System thread interface
○ Pause threads (this_thread::sleep_for(time))
○ Threads priority
○ Threads affinity “pinning”

17

https://cplusplus.com/reference/thread/thread/

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Data shared between threads

There’s no problem if all shared data is read-only. But, this is not true in many cases.
Modifying the shared data can cause problems.

Be careful when sharing data: problematic race conditions (the threads execution order affects the
correctness) data races occur when the threads access the same memory location and one
updates it. We need to serialize to guarantee consistency and defined behavior.

18

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Protecting shared data

- Critical sections

- Mutex

- Locks

- Deadlock

19

Data shared between threads

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Protecting shared data

- Critical sections

- Mutex

- Locks

- Deadlock

Why this topic so relevant?

20

Data shared between threads

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallelism challenges

Thinking in parallel
Locks and mutexes
Shared mutable state

21

timed_mutex the_mutex;

void task1() {

 cout << "Task1 trying to get lock" << endl;

 the_mutex.lock();

 cout << "Task1 has lock" << endl;

 this_thread::sleep_for(500ms);

 cout << "Task1 releasing lock" << endl;

 the_mutex.unlock();

}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallelism challenges

Locks and mutexes
“Locks, can’t live with them, can’t live without them.” [Ref 1]
Why locks are so problematic?

22

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

Condition variables
From CPP reference: “A condition variable is a synchronization primitive that allows multiple
threads to communicate with each other. It allows some number of threads to wait (possibly with a
timeout) for notification from another thread that they may proceed. A condition variable is always
associated with a mutex.”

23

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

Condition variable example from cplusplus.com

24

#include <iostream>

#include <string>

#include <thread>

#include <mutex>

#include <condition_variable>

std::mutex m;

std::condition_variable cv;

std::string data;

bool ready = false;

bool processed = false;

void worker_thread()

{

 std::unique_lock lk(m);

 cv.wait(lk, []{return ready;}); // Wait until main() sends data, then we

own the lock.

 std::cout << "Worker thread is processing data\n";

 data += " after processing";

 processed = true; // Send data back to main()

 std::cout << "Worker thread signals data processing completed\n";

 lk.unlock(); //Manual unlocking is done before notifying

 cv.notify_one();

}

int main()

{

 std::thread worker(worker_thread);

 data = "Example data";

 {

 std::lock_guard lk(m);

 ready = true;

 std::cout << "main() signals data ready\n";

 }

 cv.notify_one();

 {

 std::unique_lock lk(m);

 cv.wait(lk, []{return processed;});// wait for the

worker

 }

 std::cout << "Back in main(), data = " << data << '\n';

 worker.join();

}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

Condition variable example from cplusplus.com

25

#include <iostream>

#include <string>

#include <thread>

#include <mutex>

#include <condition_variable>

std::mutex m;

std::condition_variable cv;

std::string data;

bool ready = false;

bool processed = false;

void worker_thread()

{

 std::unique_lock lk(m);

 cv.wait(lk, []{return ready;}); // Wait until main() sends data, then we

own the lock.

 std::cout << "Worker thread is processing data\n";

 data += " after processing";

 processed = true; // Send data back to main()

 std::cout << "Worker thread signals data processing completed\n";

 lk.unlock(); //Manual unlocking is done before notifying

 cv.notify_one();

}

int main()

{

 std::thread worker(worker_thread);

 data = "Example data";

 {

 std::lock_guard lk(m);

 ready = true;

 std::cout << "main() signals data ready\n";

 }

 cv.notify_one();

 {

 std::unique_lock lk(m);

 cv.wait(lk, []{return processed;});// wait for the

worker

 }

 std::cout << "Back in main(), data = " << data << '\n';

 worker.join();

}

main() signals data ready
Worker thread is processing data
Worker thread signals data processing completed
Back in main(), data = Example data after processing

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

Futures
Facility to obtain values that are returned
and to catch exceptions that are thrown by
asynchronous tasks

26

#include <iostream>

#include <future>

int task() {

 std::cout << "Task started" << std::endl;

 std::cout << "Task completed" << std::endl;

 return 1;

}

int main() {

 //future that launches a task

 std::future<int> fut1 = std::async(std::launch::async, task);

 // Wait for the result of task

 int result = fut1.get();

 std::cout << "The result is : " << result << std::endl;

 return 0;

}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

Futures

27

#include <iostream>

#include <future>

int task() {

 std::cout << "Task started" << std::endl;

 std::cout << "Task completed" << std::endl;

 return 1;

}

int main() {

 //future that launches a task

 std::future<int> fut1 = std::async(std::launch::async, task);

 // Wait for the result of task

 int result = fut1.get();

 std::cout << "The result is : " << result << std::endl;

 return 0;

}

Task 1 started
Task 1 completed
The result is : 1

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

28

#include <iostream>

#include <future>

int task() {

 std::cout << "Task started" << std::endl;

 std::cout << "Task completed" << std::endl;

 return 1;

}

int main() {

 //future that launches a task

 std::future<int> fut1 = std::async(std::launch::async, task);

 // Wait for the result of task

 int result = fut1.get();

 std::cout << "The result is : " << result << std::endl;

 return 0;

}

Task 1 started
Task 1 completed
The result is : 1

Did you notice? What is it?

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Tasks

AKA Asynchronous programming
Contrary of blocking and waiting, tasks can run in background
Threads vs. tasks

29

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization
Promises
std::promise provides means to set a value that can later be read with a std::future object: the
waiting thread could block on the future, while the thread providing the data could use the promise
to set the associated value and make the future ready [6].

promise: producer/writer.
future: consumer/reader

30

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

31

// promise example from <https://cplusplus.com/reference/future/promise/>

#include <iostream> // std::cout

#include <functional> // std::ref

#include <thread> // std::thread

#include <future> // std::promise, std::future

void print_int (std::future<int>& fut) {

 int x = fut.get();

 std::cout << "value: " << x << '\n';

}

int main ()

{

 std::promise<int> prom; // create promise

 std::future<int> fut = prom.get_future(); // engagement with future

 std::thread th1 (print_int, std::ref(fut)); // send future to new thread

 prom.set_value (10); // fulfill promise

 // (synchronizes with getting the future)

 th1.join();

 return 0;

}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

32

value: 10

// promise example from <https://cplusplus.com/reference/future/promise/>

#include <iostream> // std::cout

#include <functional> // std::ref

#include <thread> // std::thread

#include <future> // std::promise, std::future

void print_int (std::future<int>& fut) {

 int x = fut.get();

 std::cout << "value: " << x << '\n';

}

int main ()

{

 std::promise<int> prom; // create promise

 std::future<int> fut = prom.get_future(); // engagement with future

 std::thread th1 (print_int, std::ref(fut)); // send future to new thread

 prom.set_value (10); // fulfill promise

 // (synchronizes with getting the future)

 th1.join();

 return 0;

}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

A problem with futures:
Data race and undefined behavior when accessing a std::future object from multiple threads
(without additional synchronization)

33

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Threads synchronization

Solution: shared_future
Single producer multiple consumers
Several threads can receive a “value”

34

Source [6]

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Thread safe concurrent data structures, such as:

● Stacks
● Queues
● Lists

(Potentially) Safe and (potentially) efficient threads communication

35

Communication between threads

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Queue: represented as a single-linked list [6]

36

Communication between threads

Source [6]

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Thread safe queues
std::queue FIFO:

● New data is pushed to end and the oldest data is popped at the “beginning”
● front() return a reference to the value at the “beginning”
● pop() no return, removes the element at the “beginning” (C++ constraint for exception safety)

std::queue is not suitable to be used as a concurrent queue:

● race conditions in concurrent function call
● undefined behaviours

37

Communication between threads

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

C++ concurrent data structures

Needed to share data and synchronize messages
A queue between producers and consumer threads
But, C++ does not provide a standard concurrent queue (why?)

38

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Thread safe concurrent queues
Simplest solution: Use a wrapper class that protects
shared data with member instances:

- std::queue
- std::mutex

39

Communication between threads

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Thread safe concurrent queues
Simplest solution: Use a wrapper class that protects shared data with member instances:

- std::queue
- std::mutex

Locking a mutex before calling a std::queue member function, then unlocks.
Only one thread per time can access a given queue member function.

40

Communication between threads

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Thread safe concurrent queues

41

Communication between threads

template <class T>

class threadSafeQueue {

 std::mutex m;

 std::queue<T> q;

 std::condition_variable cv;

public:

 threadSafeQueue() = default;

 void push(T value) {

 std::lock_guard<std::mutex> lg(m);

 q.push(value);

 cv.notify_one();

 }

 void pop(T& value) {

 std::unique_lock<std::mutex> lg(m);

 cv.wait(lg, [this] {return !q.empty();});

 value = q.front();

 q.pop();

 }

};
Code example from [7]
Representation from [8]

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Using the thread safe concurrent queues. What is the output? Is it safe?

42

Communication between threads

threadSafeQueue<int> myQueue;

void consumer() {

 int data;

 std::cout << "The consumer is running" << std::endl;

 myQueue.pop(data); // Get a value from the queue

 std::cout << "Consumer received: " << data << std::endl;

}

void producer() {

 std::cout << "The producer is running..." << std::endl;

 myQueue.push(10); // Push the data into the queue

 std::cout << "The producer has pushed some data" << std::endl;

}

int main() {

 auto cons = async(std::launch::async, consumer); //starting consumer

 auto prod = async(std::launch::async, producer); //starting producer

 cons.wait();

 prod.wait();

}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Using the thread safe concurrent queues. What is the output? Is it safe?

43

Communication between threads

threadSafeQueue<int> myQueue;

void consumer() {

 int data;

 std::cout << "The consumer is running" << std::endl;

 myQueue.pop(data); // Get a value from the queue

 std::cout << "Consumer received: " << data << std::endl;

}

void producer() {

 std::cout << "The producer is running..." << std::endl;

 myQueue.push(10); // Push the data into the queue

 std::cout << "The producer has pushed some data" << std::endl;

}

int main() {

 auto cons = async(std::launch::async, consumer); //starting consumer

 auto prod = async(std::launch::async, producer); //starting producer

 cons.wait();

 prod.wait();

} The consumer is running
The producer is running...
The producer has pushed some data
Consumer received: 10

The producer is running...
The consumer is runningThe producer has
pushed some data

Consumer received: 10

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallelism

Is it enough to achieve scalability?
Not for the majority of use-cases!
Why?

44

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

C++ Thread pools

Scalability
Use properly the CPU resources
Manage the overhead of threads creation

45

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

C++ Thread pools

46

#include <iostream>
#include <chrono>
#include <functional>
#include "concurrentQueue.h"
using namespace std;
// Example of a computation
void processTask(int taskId) {
 cout << "Processing task " << taskId << " in thread " << this_thread::get_id() << endl;
 this_thread::sleep_for (chrono::seconds(1)); // task processing
}
int main() {
 const int numTasks = 10;
 const int numThreads = 3 ;//std::thread::hardware_concurrency();
 cout << "Executing " << numTasks << " tasks in a thread pool of: " << numThreads << " threads" << endl;
 ThreadPool threadPool(numThreads);
 for (int i = 0; i < numTasks; ++i) {
 threadPool.enqueue(processTask, i);
 }
 return 0;
}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Concurrent queue: concurrentQueue.h

47

class ThreadPool {
 public:
 ThreadPool(size_t num_threads) {
 for (size_t i = 0; i < num_threads; ++i) {
 threads_.emplace_back([this] {
 while (true) {
 std::function<void()> task;
 {
 std::unique_lock<std::mutex> lock(mutex_);
 condition_.wait(lock, [this] {
 return stop_ || !tasks_.empty();
 });
 if (stop_ && tasks_.empty()) {
 return;
 }
 task = std::move(tasks_.front());
 tasks_.pop();
 }
 task();
 }
 });
 }
 }

 ~ThreadPool() {
 {
 std::unique_lock<std::mutex> lock(mutex_);
 stop_ = true;
 }
 condition_.notify_all();
 for (std::thread& thread : threads_) {
 thread.join();
 }
 }
 template<typename F, typename... Args>
 auto enqueue(F&& f, Args&&... args) -> std::future<typename
std::result_of<F(Args...)>::type> {
 using return_type = typename std::result_of<F(Args...)>::type;
 auto task = std::make_shared<std::packaged_task<return_type()>>(
 std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
 std::future<return_type> result = task->get_future();
 {
 std::unique_lock<std::mutex> lock(mutex_);
 tasks_.emplace([task]() {
 (*task)();
 });
 }
 condition_.notify_one();
 return result;
 }

 private:
 std::vector<std::thread> threads_;
 std::queue<std::function<void()>> tasks_;
 std::mutex mutex_;
 std::condition_variable condition_;
 bool stop_ = false;
};

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

C++ Thread pools

48

#include <iostream>
#include <chrono>
#include <functional>
#include "concurrentQueue.h"
using namespace std;
// Example of a computation
void processTask(int taskId) {
 cout << "Processing task " << taskId << " in thread " << this_thread::get_id() << endl;
 this_thread::sleep_for (chrono::seconds(1)); // task processing
}
int main() {
 const int numTasks = 10;
 const int numThreads = 3 ;//std::thread::hardware_concurrency();
 cout << "Executing " << numTasks << " tasks in a thread pool of: " << numThreads << " threads" << endl;
 ThreadPool threadPool(numThreads);
 for (int i = 0; i < numTasks; ++i) {
 threadPool.enqueue(processTask, i);
 }
 return 0;
}

Executing 10 tasks in a thread pool of: 3 threads
Processing task 0 in thread 140446390413056
Processing task 1 in thread 140446373627648
Processing task 2 in thread 140446382020352
Processing task 3 in thread 140446373627648
Processing task 4 in thread 140446390413056
Processing task 5 in thread 140446382020352
Processing task 6 in thread 140446373627648
Processing task 7 in thread Processing task
1404463904130568 in thread
140446382020352
Processing task 9 in thread 140446373627648

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Practical example

Parallelize the prime number calculation with C++ threads

49

// Function that checks if a number is prime

bool isPrime(int num) {

 if (num <= 1)

 return false;

 for (int i = 2; i < num; ++i) {

 if (num % i == 0)

 return false;

 }

 return true;

}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Naive thread pool with fixed chunks (AKA static assignment)
Very low runtime overhead
Works very well when the workload is fairly divided between the
worker threads (balanced workload)

50

Practical example

Source [6]

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++ 51

int main(int argc, char *argv[]){
 int interval=0, threadPoolSize=0;
 /* interval and threadPoolSize are argos code here and removed for visual clarity */
 const int rangeStart = 1;
 const int rangeEnd = interval;
 std::vector<std::thread> threads;
 std::vector<int> threadResults(threadPoolSize, 0);
 int chunkSize = (rangeEnd - rangeStart + 1) / threadPoolSize;
 int remaining = (rangeEnd - rangeStart + 1) % threadPoolSize;
 int start = rangeStart;
 for (int i = 0; i < threadPoolSize; ++i) {
 int end = start + chunkSize - 1;
 if (i < remaining)
 ++end;
 threads.emplace_back([start, end, i, &threadResults]() {
 threadResults[i] = countPrimesInRange(start, end);
 });
 start = end + 1;
 }
 for (auto& thread : threads) {
 thread.join();
 }
 int totalPrimes = 0;
 for (int result : threadResults) {
 totalPrimes += result;
 }
 /* Here we calculate the exec time */
 return 0;
}

Practical example

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Evaluation in a machine with 6
cores and 12 Hyperthreads
Why this performance?
Is it optimal?
Remember: it works very well
when the workload is fairly
divided between the worker
threads (balanced workload)

52

Parallel prime numbers

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

How can the performance be further improved?

53

Parallel prime numbers

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

What about using a concurrent queue?

54

Parallel prime numbers

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel prime numbers with a concurrent queue

55

#include <iostream>
#include <vector>
#include <chrono>
#include "concurrentQueue.h"
int main(int argc, char *argv[])
{
 /* interval and threadPoolSize are argos code here and removed for visual clarity */
 ThreadPool pool(threadPoolSize);
 std::vector<std::future<bool>> results;
 for (int i = 0; i < interval; ++i) {
 results.emplace_back(pool.enqueue([](int value) {
 if (value <= 1)
 return false;
 // Check from 2 to n-1
 for (int i = 2; i < value; i++){
 if (value % i == 0)
 return false;
 }
 return true;
 }, i));
 }
 int primerCount = 0;
 for (auto& result : results) {
 bool isPrime = result.get();
 if (isPrime)
 {
 primerCount++;
 }
 }
 /* Here we calculate the exec time */
 return 0;
}

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++ 56

What performance can we expect?

Parallel prime numbers with a concurrent queue

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel prime numbers

57

Evaluation in a machine with 6 cores and 12 Hyperthreads
Why this performance?

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel prime numbers

58

What if we run in a more powerful machine?

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel prime numbers

59

Evaluation in a machine with 8 cores and 16 Hyperthreads
Why this performance?

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel prime numbers

60

What if we increase the workload?

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel prime numbers

61

Evaluation in a machine with 8 cores and 16 Hyperthreads
Why this performance?

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

C++ concurrent data structures

Lock-free concurrent data structures?
A data structure where more than one thread can access the data structure concurrently
“a lock-free queue might allow one thread to push and one to pop but break if two threads try to
push new items at the same time”

“A wait-free data structure is a lock-free data structure with the additional property that every thread
accessing the data structure can complete its operation within a bounded number of steps,
regardless of the behavior of other threads”

“Writing wait-free data structures correctly is extremely hard”

- memory ordering constraints, atomic operations, making changes visible to other threads in a
exact order.

Quotes from Williams [6]

62

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Lock-Free single producer single consumer (SPSC)
Queues

63

Read more about FastFlow in: https://doi.org/10.1007/978-3-642-32820-6_65

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Lock-Free single producer single consumer (SPSC)
Queues

64

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Lock-Free single producer single consumer (SPSC)
Queues

65

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Lock-free concurrent data structures

Very strong reasons are needed to write one. The benefits have to outweighs the costs:

- Advantages

Every thread can progress no matter the status of others;
Robustness: if a thread fails only its data is lost

- Challenges
“Although it can increase the potential for concurrency of operations on a data structure and reduce
the time an individual thread spends waiting, it may well decrease overall performance” [6]
The needed atomic operations can be much slower than the non-atomic ones

66

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

C++ concurrent data structures

Work-stealing?
“work stealing is a rare event” [6]

- Work-stealing with intel Threading Building Blocks (One API) [1]

67

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

C++ concurrent data structures

Work-stealing with intel Threading Building Blocks (One API) [1]

68

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

C++17 added parallel algorithms to the standard library, with only a new first parameter for the
execution policy. Example [6]:

std::vector<int> my_data;

std::sort(std::execution::par,my_data.begin(),my_data.end());

Parallel algorithms require at least C++17 and ltbb (install libtbb-dev)

69

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

#pragma omp parallel for

for(unsigned i=0;i<v.size();++i){

 do_stuff(v[i]);

}

70

std::for_each(std::execution::par,v.begin(),v.end(),do_stuff);

Parallel For

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

71

std::accumulate (from left successively applying the operator)

std::vector<int> v{1, 2, 3, 4};

std::accumulate(v.begin(), v.end(), 1, [](int a, int b){ return a * b; });

From www.modernescpp.com

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

72

std::reduce (applying the operator in a non-deterministic way)

From www.modernescpp.com

std::vector<int> v{1, 2, 3, 4};

std::reduce(std::execution::par, v.begin(), v.end(), 1 , [](int a, int b){ return a * b; });

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

73

std::transform_reduce

The calculated results is: 55

first,
last

- the range of elements to apply the algorithm to

init - the initial value of the generalized sum

reduce - binary FunctionObject that will be applied in unspecified order to the results of transform, the results of other
reduce and init.

transform - unary or binary FunctionObject that will be applied to each element of the input range(s). The return type must be
acceptable as input to reduce.

https://en.cppreference.com/w/cpp/named_req/FunctionObject
https://en.cppreference.com/w/cpp/named_req/FunctionObject

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

74

std::transform_reduce

// Example modified from https://dev.to/sandordargo/the-big-stl-algorithms-tutorial-reduce-operations-3f1m

#include <iostream>

#include <numeric>

#include <vector>

int main() {

 std::vector v {1, 2, 3, 4, 5};

 int calc = std::transform_reduce(v.begin(), v.end(), 0,

 [](int l, int r) {return l+r;},

 [](int i) {return i*i;});

 std::cout << "The calculated result is: " << calc << std::endl;

}

The calculated result is: 55

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

75

#include <iostream>

#include <numeric>

#include <vector>

int main() {

 using namespace std;

 std::vector v {1, 2, 3, 4, 5};

 int calc = std::transform_reduce(

 v.begin(),

 v.end(),

 0, //beginning of the vector

 [](int l, int r) {

 cout << "Reduce - L: " << l << " & R: " << r << " local: " << l+r << endl;

 return l+r;

 }, //reduce (sum transformed values)

 [](int i) {

 cout << "Transform - i: " << i << " local: (" << i << "*" << i << "): " << i*i << endl;

 return i*i;

 } //transform: multiplies the values

);

 std::cout << "The calculated result is: " << calc << std::endl;

}

Transform - i: 2 local: (2*2): 4
Transform - i: 1 local: (1*1): 1
Reduce - L: 1 & R: 4 local: 5
Transform - i: 4 local: (4*4): 16
Transform - i: 3 local: (3*3): 9
Reduce - L: 9 & R: 16 local: 25
Reduce - L: 5 & R: 25 local: 30
Reduce - L: 0 & R: 30 local: 30
Transform - i: 5 local: (5*5): 25
Reduce - L: 30 & R: 25 local: 55
The calculated result is: 55

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

76

See the list of parallelized algorithms: https://en.cppreference.com/w/cpp/algorithm

https://en.cppreference.com/w/cpp/algorithm

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ Parallel algorithms

77

Is C++ STL scalable enough for all use cases?

Probably not for all. That is why it can be extended to run in accelerators (e.g., GPGPUs,
FPGAs) or multiple machines (distributed computing).

Other programming languages have a better support for distributed computing than C++

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Advanced Parallel Computing

-
- Lock-free with the FastFlow and Boost library
- Work-stealing with intel threading building block (One API)

78

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Further resources

Some great books

79

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Assignment: standard C++ Parallel Computing

See the assignment document

80

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

References
1- Voss, Michael, Rafael Asenjo, and James Reinders. Pro TBB: C++ parallel programming with threading building
blocks. Vol. 295. New York: Apress, 2019.

2- Meyers, Scott. Effective modern C++: 42 specific ways to improve your use of C++ 11 and C++ 14. " O'Reilly
Media, Inc.", 2014.

3- Griebler, Dalvan, Adriano Vogel, Daniele De Sensi, Marco Danelutto, and Luiz G. Fernandes. "Simplifying and
implementing service level objectives for stream parallelism." The Journal of Supercomputing 76 (2020): 4603-4628.

4- Aldinucci, Marco, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. "Fastflow: High‐Level and Efficient
Streaming on Multicore." Programming multi‐core and many‐core computing systems (2017): 261-280.

5- Sutter, Herb. "The free lunch is over: A fundamental turn toward concurrency in software." Dr. Dobb’s journal 30,
no. 3 (2005): 202-210.

6- Williams, Anthony. C++ concurrency in action. Simon and Schuster, 2019.

7- Raynard, James. Learn Multithreading with Modern C++. Independently published, 2022

8- http://15418.courses.cs.cmu.edu/spring2013/article/13

81

Thank you!

JKU/Dynatrace Co-Innovation Lab
LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

Adriano Vogel <adriano.vogel at jku.at and at dynatrace.com>

