JXU

LINZ INSTITUTE
OF TECHNOLOGY

ifdynalrace

Parallel Computing with Modern C++

Adriano Vogel

JKU/Dynatrace Co-Innovation Lab
LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

Parallel Computing

Parallelism is everywhere

® Servers
® Computers
® Smartphones

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Why Parallel Computing?

High performance (e.g., low execution time, high throughput, low latency)
Scalability

Quality of services

Reduce the energy consumption?

- Less cost

- More sustainable

But how is it possible?

J XU oF Technotooy

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Why Parallel Computing?

Power consumption reduction obtained with parallel execution compared to the sequential ones
(Source [3])

Pbzip2 Lane detection Person recognition

Power consumption reduction (%) - 9.43% - 10.37% - 7.39%

How is it possible?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Why Parallel Computing?

Power consumption reduction obtained with parallel execution compared to the sequential ones

T
5 § Measured
20 Required (MIN) = -
= | T
oo
a2 sl e s i e WA B Ced
A [0 S0 SR v R V A — N Je—— o T — n———
E Measured
S Required (MAX) — -
g% ...
ol
' ' 2.4 §
el Number of Cores 5 22
= 0 Clock Frequency ---- H 2 =
S5 178 3
ES ... = 16 a:)
é """"""""" G303 B | PR SR Rt N B '."'."'."".'".'";"'."'."';"'."'.'";";'".'"'."'."'.'";"'_'"."';"'.'"_'"'.";'".'";"'.'".'";'_:. 14 8‘ SOUFCG [3]
12 8
J | 1 Lt
200 250

J ! U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Concurrent vs. Parallel

Tasks (A) and (B) are only concurrent. The others are concurrent and parallel

JXU

a)
®)
©
€))
&)
¢

WORK WORK | | WORK
WORK WORK WORK |
WORK |
WORK |
WORK WORK |
WORK WORK |

LINZ INSTITUTE
OF TECHNOLOGY

time

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Source [1]

Parallel Computing

Task Parallelism

1 B 9 12 6

14

3

| AVERAGE MINIMUM BINARY OR

{

/ 1 15

J XU or TecinoLoey

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

U

J

5.243

Source [1]

Parallel Computing

Data parallelism

Ty
(e) (o) (o) () (cap) (cap) (‘e
TU 00001

Source [1]

J ! U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

How do we achieve parallelism in computing applications?

We (still) need to model and program our applications to execute in parallel (in the vast majority of
cases).

Software must be designed to run in parallel: “The free lunch is over.” [Ref 3]

Different ways were already presented in this course.
Today we will see how to parallel computing works in modern C++ using the standard C++ threads

Requirements: Familiarity with modern C++ features and access to C++17 compiler
Why C++?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing

Why C++?
A great starting point to parallel computing

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

10

Parallel Computing

Why C++?
It is efficient!
10° 382354331
@2 : ESYSBESLRB[_INYT
n
T 192
S
b
o 1 6 8.2 69 82 6 .74 82574
- 10 41 55 =10 43 Fq9.9 1.6
= 1.3 :
10° — [
optimized Flink Flink Flink Flink Flink

1 Node 1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Read more on Zeuch et al. Analyzing Efficient Stream Processing on Modern Hardware

J ! U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Parallel Computing - Concurrency in C++

C++11 standard provided support for concurrency through multithreading (Standard C++ Thread
Library)

Improved support with C++17 and C++20
No major updates seen (until now) in C++23

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

12

Parallel Computing

What are threads?

® Hardware threads
® Software threads

® std::threads

J XU oF Technotooy

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

13

Parallel Computing

What are threads?

® Hardware threads
® Software threads

® std::threads

J XU oF Technotooy

? ? ? ; software threads

level 1 l e L SEER R
hardware threads
(logical processors)

level 2 | REE s ANazisana s sas i asa

"
processing
core

Source: https://techlarry.github.io/0S/

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++ 1

Parallel Computing

What if there are created more threads than software threads or hardware threads?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

15

Standard C++ threads

// std::cout
// std::thread

Code examples with C++ thread class void

Implemented with RAII

// do stuff...
void int

// do stuff...
int

// spawn new thread that calls foo()
// spawn new thread that calls bar(0)

// synchronize threads:
// pauses until first finishes

// pauses until second finishes

J ! U LINZ INSTITUTE
OF TECHNOLOGY 16
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Standard C++ threads

Many other features <https://cplusplus.com/reference/thread/thread/>

® arguments
change of ownership
running in background

identifying threads

System thread interface

O Pause threads (this_thread::sleep_for(time))
O Threads priority

O Threads affinity “pinning”

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

17

https://cplusplus.com/reference/thread/thread/

Data shared between threads

There’s no problem if all shared data is read-only. But, this is not true in many cases.

Modifying the shared data can cause problems.

Be careful when sharing data: problematic race conditions (the threads execution order affects the
correctness) data races occur when the threads access the same memory location and one
updates it. We need to serialize to guarantee consistency and defined behavior.

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

18

Data shared between threads

Protecting shared data
- Critical sections
- Mutex
- Locks

- Deadlock

J XU oF Technotooy

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

19

Data shared between threads

Protecting shared data
- Critical sections
- Mutex
- Locks

- Deadlock

Why this topic so relevant?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

20

Parallelism challenges

Thinking in parallel
Locks and mutexes
Shared mutable state

J XU oF Technotooy

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

21

Parallelism challenges

Locks and mutexes
“Locks, can't live with them, can’t live without them.” [Ref 1]

Why locks are so problematic?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

22

Threads synchronization

Condition variables

From CPP reference: “A condition variable is a synchronization primitive that allows multiple
threads to communicate with each other. It allows some number of threads to wait (possibly with a
timeout) for notification from another thread that they may proceed. A condition variable is always
associated with a mutex.”

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

23

Threads synchronization

Condition variable example from cplusplus.com

// Wait until main() sends data, then we // wait for the

own the lock. worker

// Send data back to main()

//Manual unlocking is done before notifying

J XU oF Technotooy

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++ 2

Threads synchronization

Condition variable example from cplusplus.com

// wait for the

// Wait until main() sends data, then we
worker

own the lock.

// Send data back to main()

main() signals data ready

//Manual unlocking is done before notifying
Worker thread is processing data
LINZ INSTITUTE Worker thread signals data processing completed
J z U OF TECHNOLOGY Back in main(), data = Example data after processing

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

25

Threads synchronization

Futures

Facility to obtain values that are returned
and to catch exceptions that are thrown by
asynchronous tasks

//future that launches a task

// Wait for the result of task

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

26

Threads synchronization

Futures

JXU

LINZ INSTITUTE
OF TECHNOLOGY

//future that launches a task

// Wait for the result of task

Task 1 started
Task 1 completed
The result is : 1

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

27

Threads synchronization

Did you notice? What is it?

JXU

LINZ INSTITUTE
OF TECHNOLOGY

//future that launches a task

// Wait for the result of task

Task 1 started
Task 1 completed
The result is : 1

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

28

Standard C++ Tasks

AKA Asynchronous programming
Contrary of blocking and waiting, tasks can run in background

Threads vs. tasks

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

29

Threads synchronization

Promises

std::promise provides means to set a value that can later be read with a std::future object: the
waiting thread could block on the future, while the thread providing the data could use the promise
to set the associated value and make the future ready [6].

promise: producer/writer.

future: consumer/reader

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

30

Threads synchronization

// promise example from <https://cplusplus.com/reference/future/promise/>
// std::cout
// std::ref
// std::thread
// std::promise, std::future

void int>é&
int
int
int // create promise
int // engagement with future

// send future to new thread
// fulfill promise
// (synchronizes with getting the future)

J ! U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

31

Threads synchronization

// promise example from <https://cplusplus.com/reference/future/promise/>

void

int

int

int

int

J XU or TecinoLoey

// std::cout

// std::ref

// std::thread

// std::promise, std::future
int>é&

// create promise

// engagement with future

// send future to new thread

// fulfill promise

// (synchronizes with getting the future)

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

value: 10

32

Threads synchronization

A problem with futures:

Data race and undefined behavior when accessing a std::future object from multiple threads
(without additional synchronization)

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

33

Threads synchronization

Solution: shared_future

Single producer multiple consumers

Several threads can receive a “value”

LINZ INSTITUTE
OF TECHNOLOGY

JXU

Thread 1

auto local=sf;

N

Copying is safe.

Shared variable =f

Thread 2

A std: :shared_ future<int>
local.wait ()
Refers to
asynchronous
local result
std: :shared future<ints> » int <
Refers to Refers to
A
S

auto local=sf;

4

local.wait ()

l local

std: :shared future<int>

N
\’\
~
\\

SO no data race

“_ Separate objects,

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Source [6]

34

Communication between threads

Thread safe concurrent data structures, such as:

® Stacks
® Queues
® Lists

(Potentially) Safe and (potentially) efficient threads communication

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

35

Communication between threads

Queue: represented as a single-linked list [6]

Tail Head
S ——

 le—fo Jl«e—'Ffo | l«e—tFo]

Source [6]

J XU oF Technotooy

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++ %

Communication between threads

Thread safe queues
std::queue FIFO:
® New data is pushed to end and the oldest data is popped at the “beginning”

® front() return a reference to the value at the “beginning”
® pop() no return, removes the element at the “beginning” (C++ constraint for exception safety)

std::queue is not suitable to be used as a concurrent queue:

® race conditions in concurrent function call
® undefined behaviours

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

37

C++ concurrent data structures

Needed to share data and synchronize messages
A queue between producers and consumer threads
But, C++ does not provide a standard concurrent queue (why?)

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

38

Communication between threads

Thread safe concurrent queues

Simplest solution: Use a wrapper class that protects
shared data with member instances:

- std::queue
- std::mutex

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

39

Communication between threads

Thread safe concurrent queues
Simplest solution: Use a wrapper class that protects shared data with member instances:

- std::queue
- std::mutex
Locking a mutex before calling a std::queue member function, then unlocks.

Only one thread per time can access a given queue member function.

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

40

Communication between threads

Thread safe concurrent queues

J XU oF Technotooy

(

) (

)

) @

(

) (

)

l

Code example from [7]
Representation from [8]

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

41

Communication between threads

Using the thread safe concurrent queues. What is the output? Is it safe?

// Get a value from the queue

// Push the data into the queue

//starting consumer

//starting producer

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

42

Communication between threads

Using the thread safe concurrent queues. What is the output? Is it safe?

JXU

LINZ INSTITUTE
OF TECHNOLOGY

// Get a value from the queue

// Push the data into the queue

//starting consumer

//starting producer

The consumer is running The producer is running...
The producer is running... The consumer is runningThe producer has
The producer has pushed some data pushed some data

Consumer received: 10
Consumer received: 10
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

43

Standard C++ Parallelism

Is it enough to achieve scalability?
Not for the majority of use-cases!
Why?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

44

C++ Thread pools

Scalability
Use properly the CPU resources

Manage the overhead of threads creation

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

45

C++ Thread pools

namespace
// Example of a computation
void int
// task processing
int
const int
const int //std::thread::hardware_concurrency();
int

J XU oF Technotoey

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++ 0

Concurrent queue: concurrentQueue.h

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

47

C++ Thread pools

// Example of a computation

JXU

// task processing

//std: :thread: :hardware concurrency () ;

LINZ INSTITUTE
OF TECHNOLOGY

Executing 10 tasks in a thread pool of: 3 threads

Processing task 0 in thread 140446390413056
Processing task 1 in thread 140446373627648
Processing task 2 in thread 140446382020352
Processing task 3 in thread 140446373627648
Processing task 4 in thread 140446390413056
Processing task 5 in thread 140446382020352
Processing task 6 in thread 140446373627648
Processing task 7 in thread Processing task
1404463904130568 in thread
140446382020352

Processing task 9 in thread 140446373627648

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

48

Practical example

Parallelize the prime number calculation with C++ threads

// Function that checks if a number is prime

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

49

Practical example

Naive thread pool with fixed chunks (AKA static assignment)

Very low runtime overhead

Works very well when the workload is fairly divided between the
worker threads (balanced workload)

Thread 1 Thread 2

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Thread m

Source [6]

50

Practical example

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

51

Parallel prime numbers

Evaluation in a machine with 6
cores and 12 Hyperthreads

Why this performance?

Is it optimal?

Remember: it works very well

when the workload is fairly
divided between the worker
threads (balanced workload)

JXU

LINZ INSTITUTE
OF TECHNOLOGY

90

80

70

60

Execution Time and STDev
N
=)

Execution Time of a milion prime numbers calculation

| | | I | | |
primes-threadPool-fixed-chunks

| | | | | | |

|
|

5 6 7 8 9 10 11
Number of threads

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

52

Parallel prime numbers

How can the performance be further improved?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

53

Parallel prime numbers

What about using a concurrent queue?

JXU

LINZ INSTITUTE
OF TECHNOLOGY

C JC)OCOC OO
C OO)

l

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

54

Parallel prime numbers with a concurrent queue

// Check from 2 to n-1

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

55

Parallel prime numbers with a concurrent queue

What performance can we expect?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

56

Parallel prime numbers
Evaluation in a machine with 6 cores and 12 Hyperthreads

Why this performance?

JXU

LINZ INSTITUTE
OF TECHNOLOGY

Execution Time of a milion prime numbers calculation

I [I I I I I I

70 -

Execution Time and STDev
N
)
|
+

I
primes-threadPool-fixed-
primes-threadPool-concQueue

| |
chunks

I
i

0 | | | | | | | | |
1 2 3 A 3 6 7 8 9

Number of threads
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

57

Parallel prime numbers

What if we run in a more powerful machine?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

58

Parallel prime numbers

Evaluation in a machine with 8 cores and 16 Hyperthreads

Why this performance?

JXU

LINZ INSTITUTE
OF TECHNOLOGY

90
80
70
60
50
40
30
20

Execution Time and STDev

10

Execution Time of a milion prime numbers calculation

I I I I I I I I | | |
primes-threadPool-fixed-chunks +———

primes-threadPool-concQueue

——
e— — %

1

Lo
2 3 4 5

6 7 8 9 10 11 1213 14 15 16

Number of threads

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

59

Parallel prime numbers

What if we increase the workload?

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

60

Parallel prime numbers

Evaluation in a machine with 8 cores and 16 Hyperthreads

Why this performance?

JXU

LINZ INSTITUTE
OF TECHNOLOGY

Execution Time of two million prime numbers calculation

2 10 | | | | | | | | | | | | | |
primes-threadPool-fixed-chunks +———
primes-threadPool-concQueue

e}

Execution Time and STDev
2
-
o

[y
o
o

o B AR T LR T L T
M

[[e S [[[At [[y [[A s A A S S

| I
2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Number of threads

o

[y

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++ o1

C++ concurrent data structures

Lock-free concurrent data structures?
A data structure where more than one thread can access the data structure concurrently

‘a lock-free queue might allow one thread to push and one to pop but break if two threads try to
push new items at the same time”

“A wait-free data structure is a lock-free data structure with the additional property that every thread
accessing the data structure can complete its operation within a bounded number of steps,
regardless of the behavior of other threads”

“‘Writing wait-free data structures correctly is extremely hard”

- memory ordering constraints, atomic operations, making changes visible to other threads in a
exact order.

Quotes from Williams [6]

J z U LINZ INSTITUTE
OF TECHNOLOGY 62
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Lock-Free single producer single consumer (SPSC)
Queues

Applications [Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...
Problem Solving Autonomic e Simulation || Accelerator
Environment Behav.Skeletons Montecarlo || self-offloading || _-
High-level A f Streaming networks patterns s ey
programming Skeletons: Pipeline, farm, D&C, ... 4 input_’ : -,E)utput
g - ~\ Stream W Farm| Steam
Low-level | & Arbitrary streaming networks (building blocks)
programming g Lock-free SPSC, SPMC, MPSC, MPMC queues
[T
Run-time Simple streaming networks (building blocks) :
support g Lock-free SPSC queues and general threading model A MPSC
s Multi-corq and many-core . _@_) @.@_)@
cc-UMA or cc-NUMA featuring sequential or weak consistency
v lock-free SPSC queue Producer Consumer

Read more about FastFlow in: https://doi.org/10.1007/978-3-642-32820-6 65

J ! U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

63

Lock-Free single producer single consumer (SPSC)
Queues

JXU

>

Image
Dataset

LINZ INSTITUTE
OF TECHNOLOGY

Load Segment Extract Index Rank Out
'Single Thread Thread Thread Thread Single
fThreadi queve| PoOOI queve| PoOI queve| Pool queue Pool queue |Thread

Bow e Bbwm “oBbw tco b O
OO0 OO (ONe) oNe)

- 100000
i R 90}
a =
S | etaiiee R | 10000Z
215 | '. R ; >
(@) \
= : - Qo
|—1O B e - - ll g ™ m mw E 1000 S
o | IETETINGE NN LR])Y b
55| I 100 ©
> B | 2

B ARSI oS A I ISEICIC TN
05, 75010, 05, 1) 10, 13, 15, 1) QLG S,
AR IR N CNVNCYNE
SO QLRI ,0/,0,6 v/ //0
78,1%, 16,716,165, 18,186,156, 18,2 Y2 oS
2 o2 02 o2 oL oL Z oA 66,718 16
QTR QRO R Y o0, 70,7
10,710,710, 10, 10,10, (0,10, 10, "% S A o2 oS
0 &1 &S)81 C L fo,) o, R 1o
TSI 8o oy
AR A

TBB-Throughput ©
FastFlow-Throughput

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

TBB-Latency

FastFlow-Latency

4

Results

64

Lock-Free single producer single consumer (SPSC)
Queues

Ferret App NonBlocking IR 60 Ferret App Blocking IR 60

@80 i Measured throughput — -~ - 7] @80 i "'-,,.l)it 'x\ : i
= = E (R ,.". N 2 VIVA L AL
260 i /-| ! ,,: "| |"); [ll ‘,‘JL f “\‘ .(5}'_60 N y |II ‘\" “(‘ \// L J oA "} A
£ W LA SRR AN W I S PR o L <40 b ! Iy |
40 1y ipat) Y AR AT T 2 ; \
8 J o« hLn \: Y T 1\ \f \ 2 | |
20,/ L 1 ; y 4 E20}, s i
= Y ' - ™ Measured throughput — ——-
gmoo " | g7ooo | Measured latency |
>5000 | {1 5000 | 2
o £
£3000 . %3000 - 4
5 3
1000 - Measured latency 1 1000 7
] w
o 8 F g 8 F E
o 9o
a6 abr T
24 N 4t 4
Sy PS 1 1 22§ PS 1 -
3 PS 2 3 PS 2
E PS3 g PS3
3 PS4 E PS4
=100 [- ' ' ' "y =10} ' !]
S g0 | { Ssof -
o 60 | {1 = 60f :
O 40t 1 Q4o .
220} s > 20 | .
< : Utilization (%) : < ; Utilization (%)
10 30 50 70 90 10 30 50

Time (s)

(a) Non-blocking Mode.

Time (s)

(b) Blocking Mode.

J XU oF Technotoey

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

65

Lock-free concurrent data structures

Very strong reasons are needed to write one. The benefits have to outweighs the costs:

- Advantages
Every thread can progress no matter the status of others;

Robustness: if a thread fails only its data is lost

- Challenges

“Although it can increase the potential for concurrency of operations on a data structure and reduce
the time an individual thread spends waiting, it may well decrease overall performance” [6]

The needed atomic operations can be much slower than the non-atomic ones

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

66

C++ concurrent data structures

Work-stealing?
“‘work stealing is a rare event” [6]
- Work-stealing with intel Threading Building Blocks (One API) [1]

pop from head
(newest task)"‘

steal from tail
(oldest task)

J XU o Technotoey

Adrlallu V\Ju\ll UM MIVID VI 1T dTUlNIvl wvilipuena Is YVILIE IVIVUGOGIIT W " "

67

C++ concurrent data structures
Work-stealing with intel Threading Building Blocks (One API) [1]

ste

Thiead i

Thread 3

th B tio

& ' s
) 4 >
T
: j
A '

J XU o echnoLosy

steal

Thread 2

st
Thread 4

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

68

Standard C++ Parallel algorithms

C++17 added parallel algorithms to the standard library, with only a new first parameter for the
execution policy. Example [6]:

Parallel algorithms require at least C++17 and Itbb (install libtbb-dev)

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

69

Standard C++ Parallel algorithms

Parallel For

#fpragma omp parallel for

std::for each(std::execution::par,v.begin(),v.end(),do stuff);

for (unsigned i=0;i<v.size();++1) {

do stuff(v[i]);

J XU oF Technotooy

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++ 0

Standard C++ Parallel algorithms

std::accumulate (from left successively applying the operator)

v
——

v

From www.modernescpp.com
J z U LINZ INSTITUTE 24
OF TECHNOLOGY

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

71

Standard C++ Parallel algorithms

std::reduce (applying the operator in a non-deterministic way)

> <

J z U LINZ INSTITUTE

OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

From www.modernescpp.com

72

Standard C++ Parallel algorithms

std::transform_reduce

first, - the range of elements to apply the algorithm to
last
init - the initial value of the generalized sum
reduce - binary FunctionObject that will be applied in unspecified order to the results of t ransform, the results of other

reduce and init

transform - unary or binary FunctionObject that will be applied to each element of the input range(s). The return type must be
acceptable as input to reduce.

J XU oF TechinoLosy
Adriano VOEB?a‘}?éCRIS‘Fg %ﬁﬁulygrjgllIg?Computing with Modern C++ 3

https://en.cppreference.com/w/cpp/named_req/FunctionObject
https://en.cppreference.com/w/cpp/named_req/FunctionObject

Standard C++ Parallel algorithms

std::transform_reduce

// Example modified from https://dev.to/sandordargo/the-big-stl-algorithms-tutorial-reduce-operations-3£flm

JX2U oF TecrinoLoey
Adriano VOEB?a‘}?&CRfS‘Fg %ﬁful-l’ta'iﬁ’aﬁgl Computing with Modern C++

74

Standard C++ Parallel algorithms

//beginning of the vector

//reduce (sum transformed wvalues)

//transform: multiplies the values

JXU

LINZ INSTITUTE
OF TECHNOLOGY

Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

Transform - i: 2 local: (2*2): 4
Transform -i: 1 local: (1*1): 1
Reduce - L: 1 & R: 4 local: 5
Transform - i: 4 local: (4*4): 16
Transform - i: 3 local: (3*3): 9
Reduce - L: 9 & R: 16 local: 25
Reduce - L: 5 & R: 25 local: 30
Reduce - L: 0 & R: 30 local: 30
Transform - i: 5 local: (5*5): 25
Reduce - L: 30 & R: 25 local: 55
The calculated result is: 55

75

Standard C++ Parallel algorithms

See the list of parallelized algorithms: https://en.cppreference.com/w/cpp/algorithm

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

76

https://en.cppreference.com/w/cpp/algorithm

Standard C++ Parallel algorithms

Is C++ STL scalable enough for all use cases?

Probably not for all. That is why it can be extended to run in accelerators (e.g., GPGPUSs,
FPGASs) or multiple machines (distributed computing).

Other programming languages have a better support for distributed computing than C++

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

77

Advanced Parallel Computing

- Lock-free with the FastFlow and Boost library
- Work-stealing with intel threading building block (One API)

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

78

Further resources

Some great books

OREILLY"

Effectlve
Modem C++

'I MANNING

B]ARNE STROUSTRUP

THE CREATOR OF Cs+

J ¥ U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

79

Assignment: standard C++ Parallel Computing

See the assignment document

J z U LINZ INSTITUTE
OF TECHNOLOGY
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

80

References

1- Voss, Michael, Rafael Asenjo, and James Reinders. Pro TBB: C++ parallel programming with threading building
blocks. Vol. 295. New York: Apress, 2019.

2- Meyers, Scott. Effective modern C++: 42 specific ways to improve your use of C++ 11 and C++ 14. " O'Reilly
Media, Inc.", 2014.

3- Griebler, Dalvan, Adriano Vogel, Daniele De Sensi, Marco Danelutto, and Luiz G. Fernandes. "Simplifying and
implementing service level objectives for stream parallelism." The Journal of Supercomputing 76 (2020): 4603-4628.

4- Aldinucci, Marco, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. "Fastflow: High-Level and Efficient
Streaming on Multicore." Programming multi-core and many-core computing systems (2017): 261-280.

5- Sutter, Herb. "The free lunch is over: A fundamental turn toward concurrency in software." Dr. Dobb’s journal 30,
no. 3 (2005): 202-210.

6- Williams, Anthony. C++ concurrency in action. Simon and Schuster, 2019.
7- Raynard, James. Learn Multithreading with Modern C++. Independently published, 2022
8- http://15418.courses.cs.cmu.edu/spring2013/article/13

J z U LINZ INSTITUTE
OF TECHNOLOGY 81
Adriano Vogel and Alois Zoitl. Parallel Computing with Modern C++

JXU

LINZ INSTITUTE
OF TECHNOLOGY

ifdynalrace

Thank you!

Adriano Vogel <adriano.vogel at jku.at and at dynatrace.com>

JKU/Dynatrace Co-Innovation Lab
LIT | Cyber-Physical Systems Lab
Johannes Kepler University Linz

