138 6 Puzzles and Games

@ https://commons.wikimedia.org/wiki/File:Eight_Queens12_positions.gif

Fig. 6.1 A Solution of the 8 Queens Puzzle

6.1 Chess Puzzles

We begin with two puzzles that are laid out on a chessboard with N x N
squares; typically we have N = 8, but any other size is also possible.

N Queens

The problem posed by the “N queens puzzle” is to place N queens on the
board such that no two queens can beat each other (recall that the chess piece
“queen” may beat any other piece in the same row, same column, same main
diagonal, or same antidiagonal). Figure 6.1 depicts a solution to the 8 queens
problem, but there are many other ones.

To represent such a solution, it may seem at first hand necessary to use
N pairs of numbers, where each pair denotes the position of a queen by a row
index and a column index. However, since each queen must occupy a separate
row and we have as many queens as rows, it actually suffices to represent a
solution by an array q of N numbers, where g[i] is the column of the queen
placed in row i. Thus the solution displayed in Figure 6.1 is represented as
q=1[1,4,6,0,2,7,5,3] (assuming that we use the numbers 0, .. .,7 to denote
the column indices 4, ..., I as well as the row indices 1, ..., 8 displayed in
the figure). This idea gives rise to the following declarations:

val N:N;

axiom notNull & N > 0;
type Num = N[N];

type Queens = Array[N,Num];

© 2021 Wolfgang Schreiner.



6.1 Chess Puzzles 139

We use here the type Num to denote the domain of numbers 0, ..., N; while
the value N itself is actually not a valid row/column index, it will become
handy later. A value of type Queens represents a solution of the N queens
puzzle as an an array of length N that holds column indices.

The core idea is to represent the puzzle as a system whose state is a
pair (g, n) of a partial solution where the first n queens have already been
placed in array 4. A move of the system consists of finding a position p for
the next queen such it does not beat any of the queens that have already been
placed, updating g[n] by p, and incrementing n by 1. This gives rise to the
following definition of a nondeterministic system:

shared system Queens
{
var q:Queens = Array[N,Num](N);
var n:Num = 0;
action place(p:Num) with admissible(q,n,p);
{
a[n] = p;
n = n+l;
}
}

The state of this system Queens is represented by the declarations of the two
variables q and 7. The unique initial state is represented by the initialization
values of these variables (where g holds at all positions the value N that
may be interpreted as “no index yet”). The possible moves of the system
are represented by the action place that selects an arbitrary position p that
satisfies the atomic formula admissible(q, n, p) and then updates the state as
was explained above.
The core of this definition is the predicate admissible defined as follows:

pred admissible(q:Queens,n:Num,p:Num) &
n<NApP<NA
Vi:Num with i < n.
qalil # p A
q[i]-i # p-n A
q[i]+i # p+n;

This predicate states that, given a partial placement g of n queens, the choice
of column p for the next queen is admissible if there is still a queen to be placed
(n < N) and p is a valid column index (p < N) such that no queen placed
previously in row i and column g[i] is in the same column (g[i] # p), the same
main diagonal (q[i] — i # p — n), or the same antidiagonal g[i] + i # p + n).

© 2021 Wolfgang Schreiner.



140 6 Puzzles and Games

If we now set in the RISCAL GUI the value N = 8 and execute the operation
Queens, the following output is shown:

Executing system Queens.
2057 system states found with search depth 9.
Execution completed (147 ms).

This output demonstrates that the repeated execution of all possible admissible
choices for g lead to 2057 system states where the generated state sequences
describing the iterative choices of positions for queens had at most length 9
(including the initial state); this implicitly shows that at least once all 8 queens
could be successfully placed. But how do we actually get access to some (or,
if desired, all) computed solutions?

The easiest way is to annotate the system with an invariant. Similar to the
previously introduced concept of a loop invariant (which must hold before
the the loop is executed and after every successive iteration of the loop), such
a system invariant must hold in the initial state of the system and be preserved
by the execution of every action. If the system invariant is violated, RISCAL
aborts the execution of the system with an error message that demonstrates
the sequence of states leading to this error together with the corresponding
actions that have been performed.

Thus if we annotate above system with the invariant

invariant n < N;

we get the following error:

Executing system Queens.

ERROR in execution of system Queens: evaluation of
invariant n < N;

at line 30 in file chess.txt:
invariant is violated

The system run leading to this error:
0:[q:[8,8,8,8,8,8,8,8],n:0]->place(®)->
1:[q:[9,8,8,8,8,8,8,8],n:1]->place(4)->
2:[q:[0,4,8,8,8,8,8,8],n:2]->place(7)->
3:[q:[0,4,7,8,8,8,8,8],n:3]->place(5)->
4:[q:[0,4,7,5,8,8,8,8],n:4]->place(2)->
5:[q:[0,4,7,5,2,8,8,8],n:5]->place(6)->
6:[q:[0,4,7,5,2,6,8,8],n:6]->place(1)->
7:[q:[0,4,7,5,2,6,1,8],n:7]->place(3)->
8:[q:[0,4,7,5,2,6,1,3],n:8]

ERROR encountered in execution.

© 2021 Wolfgang Schreiner.



6.1 Chess Puzzles 141

This error describes the system execution that, starting with the initial state
q=18,8,8,8,8,8,8,8] and n = 0 (describing the situation where no queen
has been placed yet), is derived by iteratively placing 8 queens at positions 0,
4,7,5,2,6,1, 3 leading to the final system state g = [0,4,7,5,2,6,1,3] and
n = 8 which denotes a solution to the puzzle; since this state violates the
invariant, the execution of the system is aborted, immediately after the first
solution has been found.

However, it is also possible to compute all solutions to the problem by
annotating the system with the following invariant:

invariant n = N = print q in T;

The evaluation of the formula print g in T yields the same truth value as the
formula T (i.e., “true”) but additionally prints the value of g as a side effect.
Thus this invariant does in no case abort the execution of the system such
that the exectuion elaborates all legal placements of queens and prints those
that represent complete solutions to the puzzle. Indeed with this annotation,
the system execution yields the following output:

Executing system Queens.

[0,4,7,5,2,6,1,3]

[0,5,7,2,6,3,1,4]

[0,6,3,5,7,1,4,2]

[7,2,0,5,1,4,6,3]

[7,3,0,2,5,1,6,4]

2057 system states found with search depth 9.
Execution completed (410 ms).

Indeed by using an invariant
invariant n = N = print q in printall;

with a global Boolean constant printall, we can configure the system to have
all solutons or just one printed. With the declaration

val printall = L;

we get the output

© 2021 Wolfgang Schreiner.



142 6 Puzzles and Games

Executing system Queens.

[0,4,7,5,2,6,1,3]

ERROR in execution of system Queens: evaluation of
invariant (n = N) = (print gq in printall);

with the same system trace as shown above. To get the system traces of all
solutions, we may use the following invariant:

invariant n = N = printtrace in printall;

The evaluation of the formula printtrace in T yields the truth value of
printall but additionally prints as a side effect the trace leading to the current
state. So for printall = T, the execution of System shows the following output:

Executing system Queens.
0:[q:[8,8,8,8,8,8,8,8],n:0]->place(®)->

8:[q:[0,4,7,5,2,6,1,3],n:8]
0:[q:[8,8,8,8,8,8,8,8],n:0]->place(7)->

8:[q:[7,3,0,2,5,1,6,4],n:8]
2057 system states found with search depth 9.
Execution completed (566 ms).

Thus, by using invariants with print and/or printtrace annotations, states
respectively system execution of interests can be displayed.

Above system definition initializes states by explicit values and updates
them by imperative commands. In a pure “mathematical” formulation, a
nondeterministic system with a state space S is described by its initial state
set I C S and its transition relation R € S X S; these can be conveniently
defined by logical formulas I(s) and R(s, s”). An execution of such a system
is a sequence (sy, s1, . . .y of states with I(sp). If the sequence is infinite, then
R(si, si+1) for every i € N. If the sequence is finite with final state s,, then
R(si, si+1) for every i < n and there is no state s’ with R(s,, s’).

Actually, also RISCAL allows such a “mathematical” formulation based
on logical formulas:

© 2021 Wolfgang Schreiner.



	Theories and Algorithms
	Theories and Models
	Theorems
	Problems
	Algorithms
	Summary
	Further Reading

	Searching and Sorting
	Searching in Arrays
	Loop Invariants and Termination Measures
	Generating and Checking Verification Conditions
	Constructing Invariants
	Binary Search
	Sorting Arrays
	Further Reading

	Sets, Relations, and Graphs
	Sets
	Relations and Directed Graphs
	The Reachability of Nodes
	Shortest Paths Between All Pairs of Nodes
	Shortest Paths Between Two Nodes
	Further Reading

	Propositional Logic
	Boolean Algebras
	Propositional Formulas
	Clausal Normal Forms
	Translating Propositional Formulas to Normal Forms
	The Minimization of Disjunctive Normal Forms
	The Satisfiability of Conjunctive Normal Forms
	Further Reading

	Big Number and Polynomial Arithmetic
	Arbitrary Precision Numbers
	The Karatsuba Algorithm
	Modular Arithmetic
	Univariate Polynomials
	Multivariate Polynomials
	Further Reading

	Puzzles and Games
	Chess Puzzles
	Mathematical Puzzles
	River-Crossing Puzzles
	Games for Two Players
	Further Reading

	Concurrent Systems
	Peterson's Algorithm
	The Alternating Bit Protocol
	A Resource Allocator
	Further Reading

	The RISCAL Software
	RISCAL Models
	Theories and Algorithms
	Searching and Sorting
	Sets, Relations, and Graphs
	Propositional Logic
	Big Number and Polynomial Arithmetic
	Puzzles and Games
	Concurrent Systems

	References
	Index

