
Pthreads Synchronization

Parallel Computing

Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria



Programmiersprache C++ Winter 2005 Operator overloading (2)Parallel Computing SS 2018 Pthreads Synchronization (2)

The Need for Synchronization
Threads operating on shared data concurrently:

scheduling determines outcome of operations → race conditions
can lead to violations of data invariants

integrity of data structures: queues, buffers,...

Classical example: concurrent transactions on bank account

Thread notification
inform one or more threads that certain condition has become true
example: returnval_heap

Thread 1 Thread 2 Balance
read balance:  €1000 €1000

read balance: €1000 €1000
set balance: €(1000 – 200) €800

set balance: €(1000 – 100) €900
give out cash: €100 €900

give out cash: €200 €900



Programmiersprache C++ Winter 2005 Operator overloading (3)Parallel Computing SS 2018 Pthreads Synchronization (3)

Basic Pthread Synchronization Mechanisms
Controlling access to shared data

mutex: mutual exclusion
special kind of semaphore
locking a mutex allows mutually exclusive access to shared data 
A mutex can be locked (“owned”) by exactly one thread at a time

lock attempt on already locked mutex will block calling thread until mutex unlocked

Thread notification
pthread_join(...): very limited, no notification

condition variables: threads block until notified that condition has become true
always combined with a mutex protecting the condition's data 

testing and setting the condition must be performed under locked mutex

multiple threads can block on a condition variable or be notified at a time
e.g. multiple consumers waiting at an empty queue of items
e.g. producer inserts items and notifies waiting consumers

Synchronization in Java:
synchronized blocks and methods, wait() and notify(),notifyAll()



Programmiersprache C++ Winter 2005 Operator overloading (4)Parallel Computing SS 2018 Pthreads Synchronization (4)

Pthread Mutexes (1/2)
Represented as variables of type pthread_mutex_t

never copy mutexes!
share mutexes by passing pointers

Static or dynamic allocation and/or initialization
static initialization

macro PTHREAD_MUTEX_INITIALIZER

set default attributes 
e.g. process/system-wide mutexes, real-time scheduling, priority-aware mutexes,...
attributes are beyond our scope

dynamic initialization
pthread_mutex_attr_t for setting mutex's attributes

int pthread_mutex_init(pthread_mutex_t *mutex, ... *attr)
pass NULL for attr to get default attributes

int pthread_mutex_destroy(pthread_mutex_attr_t *attr)
mutex becomes invalid, but can be re-initialized

dynamic allocation and initialization
allocate mutexes on heap and initialize dynamically



Programmiersprache C++ Winter 2005 Operator overloading (5)Parallel Computing SS 2018 Pthreads Synchronization (5)

Pthread Mutexes (2/2)
int pthread_mutex_lock(pthread_mutex_t *mutex)

mutex is currently unlocked: caller will own mutex
mutex is currently locked: caller blocks until mutex is unlocked

deadlock: recursively locking a mutex (unless mutex is set to be recursive)

int pthread_mutex_trylock(pthread_mutex_t *mutex)
mutex is currently unlocked: caller will own the mutex
mutex is currently locked: caller does not block

caller can e.g. enter alternative branch

int pthread_mutex_timedlock(...*mutex, ...*expire)
mutex is currently unlocked: caller will own mutex
struct timespec *expire: absolute timeout for blocking

int pthread_mutex_unlock(pthread_mutex_t *mutex)
among multiple blocking threads, exactly one is selected to own mutex
error: caller does not own mutex
error: mutex is unlocked already

Example: sum, prodcons



Programmiersprache C++ Winter 2005 Operator overloading (6)Parallel Computing SS 2018 Pthreads Synchronization (6)

Pthread Condition Variables (1/2)
Represented as variables of type pthread_cond_t

like for mutexes: analogous functions for initialization, attributes,...
PTHREAD_COND_INITIALIZER, int pthread_cond_init(...),...

Always associated with exactly one mutex
but: different condition variables may use same mutex
condition must be tested and set under protection of mutex
mutex must be properly locked and unlocked
suggested usage pattern:

Managed by Pthread condition variables (similar to Java):
set of waiting threads, (un)locking the mutex, notification of waiting threads

mutex_lock();
while (!condition) {
  mutex_unlock();
  non_busy_wait_until_notified();
  mutex_lock();
}
/* critical region: do some work... */
mutex_unlock();



Programmiersprache C++ Winter 2005 Operator overloading (7)Parallel Computing SS 2018 Pthreads Synchronization (7)

Pthread Condition Variables (2/2)
Waiting on a condition variable

int pthread_cond_wait(pthread_cond_t *cond, ... *mutex)
caller must own mutex, will then block until notified
mutex is automatically unlocked before waiting and locked again if call returns

Notifying waiting threads
int pthread_cond_signal(pthread_cond_t *cond)

caller notifies one arbitrary thread waiting on cond

notified thread wakes up and locks mutex (its call of pthread_cond_wait returns) 

int pthread_cond_broadcast(pthread_cond_t *cond)
caller notifies all threads waiting on cond

notified threads wake up (in arbitrary order) and contend for mutex

notifying threads need not own mutex (but recommended)
pthread_cond_timedwait(... *cond, ... *mutex, ... *expire)

struct timespec *expire: absolute timeout for waiting

if timed out or notified: call will return with mutex locked again

Examples: prodcons_cond, returnval_heapcond



Programmiersprache C++ Winter 2005 Operator overloading (8)Parallel Computing SS 2018 Pthreads Synchronization (8)

Pthread Barriers
Represented as variables of type pthread_barrier_t

Synchronizing pool of threads at a specific point
int pthread_barrier_init(...,unsigned int cnt)

must be called before using barrier
cnt: number of threads waiting (calls of ..._wait(...)) before all can continue

int pthread_barrier_destroy(pthread_barrier_t *b)
reset barrier to invalid state
must call pthread_barrier_init(...) before using again

int pthread_barrier_wait(pthread_barrier_t *b)
Calling thread will wait (i.e. block) until cnt threads have called ..._wait(...)

Waiting threads are then released in arbitrary order
Returns non-zero to exactly one arbitrary thread and 0 otherwise

Example: simplebarrier

In Java 1.5 or higher: CyclicBarrier



Programmiersprache C++ Winter 2005 Operator overloading (9)Parallel Computing SS 2018 Pthreads Synchronization (9)

Memory Visibility
When will changes of shared data be visible to other threads?
Pthreads standard guarantees basic memory visibility rules

thread creation
memory state before calling pthread_create(...) is visible to created thread

mutex unlocking (also combined with condition variables)
memory state before unlocking a mutex is visible to thread which locks same mutex

thread termination (i.e. entering state “terminated”)
memory state before termination is visible to thread which joins with terminated thread

condition variables
memory state before notifying waiting threads is visible to woke up threads

Memory barriers: 
instructions issued implicitly to ensure memory visibility rules for pthreads
impose order on memory accesses
all memory accesses issued before barrier must complete before any access issued 

after the barrier can complete

volatile variables do not guarantee memory consistency!



Programmiersprache C++ Winter 2005 Operator overloading (10)Parallel Computing SS 2018 Pthreads Synchronization (10)

Hints and Pitfalls (1/4)
Always wait in a loop on a condition variable (applies to any thread library)

condition should be re-evaluated after waking up → why?
intercepted wakeups

another thread might acquire mutex before the woke up thread and reset condition 

notification on weak predicates (programmer's responsibility)
e.g. notify if n <= value, but “tight” condition is n < value → unnecessary notifications

spurious wakeups
library: more efficient to notify multiple threads at pthread_cond_signal(...)

programming errors: notification although the condition is false
pthread standard does not prevent wakeups without any notifying thread [Butenhof'97]

Beware of deadlocks
threads wait for mutexes in circular fashion
fixed locking hierachy: always lock mutexes in fixed order
try and back off: unlock all mutexes in a set if one lock fails, then start again later

can lead to starvation: thread “polls” for mutex and never waits

Example: deadlock_backoff



Programmiersprache C++ Winter 2005 Operator overloading (11)Parallel Computing SS 2018 Pthreads Synchronization (11)

Hints and Pitfalls (2/4)
Beware of “badly optimizing” the use of condition variables 

lost wakeups: thread waits although condition is true
like prodcons_cond: producer signals only if buffer becomes non-empty → error

do not share condition variables between predicates
do not know which predicate a notified thread was waiting for

Speed/order of threads
do not assume anything!
adding sleep(...) is not a bug fix (but can “hide” synchronization problems)



Programmiersprache C++ Winter 2005 Operator overloading (12)Parallel Computing SS 2018 Pthreads Synchronization (12)

Hints and Pitfalls (3/4): Performance Concerns
Number of threads: 

cost of thread creation and context switches is system-dependent

Synchronization prevents concurrency and parallelism
best solution: do not share too much (Example: arraysum)

Own mutexes for shortest possible time → reduces waiting time
Massive (un)locking of mutexes is expensive 

Example: freqlocking

Mutexes and condition variables consume memory
Mutex: 40 (24) bytes in 64-bit (32-bit) environment
Condition variables: 48 bytes in 32- and 64-bit environment



Programmiersprache C++ Winter 2005 Operator overloading (13)Parallel Computing SS 2018 Pthreads Synchronization (13)

Hints and Pitfalls (4/4): Performance Concerns
Fine-grain locking 

using many “small” mutexes increases concurrency and locking overhead
Example: lockedarray/manylocks

Coarse-grain locking
using few “big” mutexes decreases concurrency and locking overhead
Example: lockedarray/biglock

Lock chaining
e.g. lock(m1), lock(m2), unlock(m1), lock(m3), unlock(m2),...
e.g. concurrent linked list: locking entire list or single nodes

Read/write locks: allow concurrent reads
multiple readers may concurrently read if no writer is active
one writer prevents any other writer or reader from accessing



Programmiersprache C++ Winter 2005 Operator overloading (14)Parallel Computing SS 2018 Pthreads Synchronization (14)

Advanced Topics
Thread-specific data

static data where each thread has a private value associated with a key

Attributes
for threads, mutexes and condition variables

Cancellation
cancel threads either immediately or at special cancellation points
held resources need to be cleaned up properly (cleanup handlers)

Realtime scheduling
setting scheduling policy and priorities, priority-aware mutexes

Thread-safe libraries
how to make libraries thread-safe?
must interfaces be changed?
often inefficient: one “big” internal mutex protecting entire functions
problem: functions which maintain internal state across calls

Spinlocks vs. mutexes
busy waiting vs. non-busy waiting


	Pthreads Synchronization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

