PERFORMANCE ANALYSIS

Course "Parallel Computing"

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at

Evaluating Parallel Programs

We achieved a speedup of 10.8 on $p=12$ processors with problem size $n=100$.

- Multiple programs may satisfy this observation:
\square Program 1:

$$
T=n+n^{2} / p .
$$

\square Program 2:

$$
T=\left(n+n^{2}\right) / p+100
$$

\square Program 3:

$$
T=\left(n+n^{2}\right) / p+0.6 p^{2}
$$

Figure 3.1, Ian Foster: DBPP

Speedup and Efficiency

- (Absolute) speedup S_{p} and efficiency E_{p} :

$$
S_{p}=\frac{T}{T_{p}} \quad E_{p}=\frac{S_{p}}{p}=\frac{T}{p \cdot T_{p}}
$$

$\square T$: execution time of sequential program.
$\square T_{p}$: execution time of parallel program with p processors.

- Relative speedup \bar{S}_{p} and efficiency \bar{E}_{p} :

$$
\bar{S}_{p}=\frac{T_{1}}{T_{p}} \quad \bar{E}_{p}=\frac{\bar{S}_{p}}{p}=\frac{T_{1}}{p \cdot T_{p}}
$$

\square Use for comparison the parallel program with 1 processor.
\square Measures "scalability" rather than "performance".

- Typical ranges: $S_{p} \leq \bar{S}_{p} \leq p$ and $E_{p} \leq \bar{E}_{p} \leq 1$.
\square If $\bar{S}_{p}>p$, we have a "superlinear speedup".
\square If $S_{p}>\overline{S_{p}}$, then $T>T_{1}$.
Speedup denotes the "performance" of parallelism, efficiency relates this performance to the invested "costs".

Diagrams

Logarithmic scales may yield additional insights.

Superlinear Speedups

Can the speedup be larger than the number of processors?
■ Simple theoretical argument: "no".
\square We can simulate the execution of a parallel program with p processors on a single processor in time $p \cdot T_{p}$. Thus $T \leq p \cdot T_{p}$ and $S_{p}=T / T_{p} \leq p$.
■ However, practical observation: "yes".
\square Cache effects: a system with p processors has typically also p times as much cache which yields more cache hits.
\square Search anomalies: if the computation involves a "search", one processor may be lucky to find the result early.

- These advantages can be "practically" not achieved on a single processor system.

However, often super-linear speedups indicate program errors.

Amdahl's Law

Assume that a workload contains a sequential fraction f.

- Amdahl's law: $S_{p} \leq \frac{1}{f+\frac{1-f}{p}} \leq \frac{1}{f}$
\square Speedup has an upper limit determined by f.

Amdahl's law, en.wikipedia.org
Speedup is limited by the sequential fraction of a workload.

Gustafson's Law

Assume workload can be scaled as much as time permits.
\square Amdahl: $S_{p} \leq \frac{1}{f+\frac{1-f}{p}}$
\square Fixed work load $T=f \cdot T+(1-f) \cdot T$
$\square S_{p} \leq \frac{T}{f \cdot T+\frac{(1-f) \cdot T}{p}}=\frac{1}{f+\frac{1-f}{p}}$
■ Gustafson: $S_{p} \leq f+p \cdot(1-f)$
\square Scalable work load $T_{p}=f \cdot T+p \cdot(1-f) \cdot T$
$\square S_{p} \leq \frac{f \cdot T+p \cdot(1-f) \cdot T}{f \cdot T+\frac{p \cdot(1-f) \cdot T}{p}}=\frac{f \cdot T+p \cdot(1-f) \cdot T}{T}=f+p \cdot(1-f)$
If the parallelizable
workload grows linearly with the numer of processors, the speedup grows correspondingly such that the efficiency remains constant.

Scalability Analysis

We have to scale the workload to keep the efficiency constant.

- Assume $T_{p, n}=\frac{T_{n}+P_{p, n}}{p}$.
$\square T_{p, n}$: the parallel time with p processors for problem size n.
$\square T_{n}$: the basic work performed by the sequential program.
$\square P_{p, n}$: the extra work performed by the parallel program.
\square Then $E_{p, n}=\frac{T_{n}}{p \cdot T_{p, n}}=\frac{T_{n}}{T_{n}+P_{p, n}}$.
$\square E_{p, n}$: the efficiency with p processors for problem size n.
\square Thus $T_{n}=\frac{E_{p, n}}{1-E_{p, n}} \cdot P_{p, n}$; for achieving constant efficiency E, we have to ensure $T_{n}=\frac{E}{1-E} \cdot P_{p, n}=K_{E} \cdot P_{p, n}$.
- Isoefficiency function: $I_{p}^{E}=K_{E} \cdot P_{p, n_{p}}$
$\square n_{p}$: a function that maps processor number p to problem size n_{p} such that $T_{n_{p}}=K_{E} \cdot P_{p, n_{p}}$.
$\square I_{p}^{E}$ describes how much the basic work load has to grow for growing processor number p to keep efficiency E.

Example: Matrix Multiplication

Multiplication of two square matrices A, B of dimension n.

- Row-oriented parallelization.
$\square A$ is scattered, B is broadcast, C is gathered.
- $T_{n}=n^{3}$ and $P_{p, n}=3 p n^{2}$
$\square T_{p, n}=\frac{n^{3}}{p}+3 n^{2}$
$\square P_{p, n}=T_{p, n} \cdot p-T_{n}=3 p n^{2}$
■ $T_{n_{p}}=K_{E} \cdot P_{p, n_{p}}$

$\square n_{p}{ }^{3}=K_{E} \cdot 3 p n_{p}^{2}$
$\square n_{p}=K_{E} \cdot 3 p$
■ $I_{p}^{E}=K_{E} \cdot P_{p, n_{p}}$
$\square I_{p}^{E}=K_{E} \cdot 3 p \cdot\left(K_{E} \cdot 3 p\right)^{2}=\left(K_{E}\right)^{2} \cdot 27 p^{3}$
The matrix dimension n must grow with $\Omega(p)$, the basic work load thus grows with $\Omega\left(p^{3}\right)$.

Example: Matrix Multiplication

Often only asymptotic estimations are possible/needed.

$$
\begin{aligned}
& \square T_{n}=\Theta\left(n^{3}\right) \text { and } P_{p, n}=\Theta\left(p \log p+n^{2} \sqrt{p}\right) \\
& \square \text { Fox-Otto-Hey algorithm on } \sqrt{p} \times \sqrt{p} \text { torus. } \\
& T_{n_{p}}=\Omega\left(P_{p, n_{p}}\right) \\
& \square n_{p}{ }^{3}=\Omega\left(p \log p+n_{p}^{2} \sqrt{p}\right) \\
& \square n_{p}{ }^{3}=\Omega\left(n_{p}^{2} \sqrt{p}\right) \Rightarrow n_{p}=\Omega(\sqrt{p}) \\
& \square n_{p}{ }^{3}=\Omega\left(\sqrt{p}{ }^{3}\right)=\Omega(p \sqrt{p})=\Omega(p \log p) \checkmark \\
& \square n_{p}=\Omega(\sqrt{p}) \\
& I_{p}^{E}=\Omega\left(P_{p, n_{p}}\right) \\
& \square I_{p}^{E}=\Omega(p \log p+p \sqrt{p})=\Omega(p \sqrt{p})
\end{aligned}
$$

The matrix dimension n must grow with $\Omega(\sqrt{p})$, the basic work load thus grows with $\Omega(p \sqrt{p})$.

Modeling Program Performance

$$
T=\frac{1}{p}\left(T_{\mathrm{comp}}+T_{\mathrm{comm}}+T_{\mathrm{idle}}\right)
$$

- $T_{\text {comp }}$: computation time.
- $T_{\text {comm }}$: communication time.
- $T_{\text {idle }}$: idle time.

Figure 3.2, Ian Foster: DBPP

The parallel program overhead mainly stems from communicating and idling.

Communication Time

$$
T_{L}=t_{s}+t_{w} \cdot L
$$

- T_{L} : the time for senting a message of size L.
- t_{s} : the fixed message startup time.
- t_{w} : the transfer time per word of the message.

Figures 3.3 and 3.4, lan Foster: DBPP

Typically $t_{s} \gg t_{w}$, thus it is better to send a single big message rather than many small messages.

Idle Time

- Apply load-balancing techniques.
■ Overlap computation and communication.
\square Have multiple threads per processor.
\square Let process interleave computation and communication.

(a)

(b)

Figure 3.5, Ian Foster: DBPP

Structure the program to minimize idling.

Execution Profiles

Poor performance may have multiple reasons.

- Replicated computation.

■ Idle times due to load imbalances.
■ Number of messages transmitted.
■ Size of messages transmitted.

Figure 3.8, Ian Foster: DBPP

Modeling/measuring execution profiles may help to improve the design of a program.

Experimental Studies

- Design experiment.
\square Identify data to be obtained.
\square Determine parameter ranges.
\square Ensure adequacy of measurements.
- Perform experiment.
\square Repeat runs to verify reproducability.
\square Drop outliers, average the others.
- Fit observed data $o(i)$ to model $m(i)$:

Figure 3.9, Ian Foster: DBPP
\square Least square fitting: minimize

$$
\sum_{i}(o(i)-m(i))^{2}
$$

\square Scaled least square fitting: minimize

$$
\sum_{i}\left(\frac{o(i)-m(i)}{o(i)}\right)^{2}
$$

(giving more weight to smaller values).

