Übungsblatt 12

Besprechung am **15.1.2017**

Aufgabe 1 Sei $V = \mathbb{Q}^3$ und $B = \begin{pmatrix} 1 & 2 & 2 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$.

- a) Zeigen Sie, dass die Spalten von B eine geordnete Basis von V sind.
- b) Sei (5, -2, 1) die Koordinatendarstellung von $x \in V$ bezüglich der Standardbasis I_3 . Berechnen Sie die Koordinatendarstellung von x bezüglich B.
- c) Sei (1,1,1) die Koordinatendarstellung von $y \in V$ bezüglich B. Berechnen Sie die Koordinatendarstellung von x bezüglich Standardbasis.
- d) Was sind die Basiswechselmatrizen $T_{B\to I_3}$ und $T_{I_3\to B}$?

Aufgabe 2 Seien $V=\mathbb{Q}[X]_{\leq 3}$ und $W=\mathbb{Q}[X]_{\leq 2}$ die \mathbb{Q} -Vektorräume der Polynome vom Grad höchstens drei bzw. zwei. Sei $\frac{d}{dX}\colon V\to W$ die (formale) Ableitung.

- a) Bestimmen Sie die Abbildungsmatrix von $\frac{d}{dX}: V \to W$ bezüglich der geordneten Basen $B_1 = (1, X, X^2, X^3)$ und $B_2 = (1, X, X^2)$.
- b) Sei $\tilde{B}_1 = (1, X, X(X-1), X(X-1)(X-2))$. Bestimmen Sie die Basiswechselmatrix $T_{\tilde{B}_1 \to B_1}$.
- c) Sei $\tilde{B}_2 = (1, X, X(X-1))$. Bestimmen Sie die Basiswechselmatrix $T_{B_2 \to \tilde{B}_2}$.
- d) Bestimmen Sie die Abbildungsmatrix von $\frac{d}{dX}$ bezüglich \tilde{B}_1, \tilde{B}_2 .

Aufgabe 3 Sei $V = \mathbb{Q}^2$ und $B = \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right)$ bzw. $C = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right)$ eine geordnete Basis von V.

- a) Seien $b_1^*, b_2^* \in V^*$ Funktionale mit $b_1^* {x \choose y} = -3x + 2y, b_2^* {x \choose y} = 2x y$. Zeigen oder widerlegen Sie, dass $B^* = (b_1^*, b_2^*)$ die zu B duale Basis ist.
- b) Bestimmen Sie die zu C duale Basis.

Aufgabe 4 Diese Aufgabe ist schriftlich zu bearbeiten.

Seien V, W zwei \mathbb{K} -Vektorräume. Zeigen Sie:

- a) Die Abbildung \cdot^{\top} : Hom $(V, W) \to \text{Hom}(W^*, V^*), h \mapsto h^{\top}$ ist linear.
- b) Für jedes $w \in W$ mit $w \neq 0$ existiert ein Funktional $y^* \in W^*$ mit $y^*(w) = 1$. Hinweis: Verwenden Sie dazu den Basisergänzungssatz (Satz 44) und Satz 51.
- c) Die Abbildung \cdot^{\top} ist injektiv.

Aufgabe 5 Seien U, V, W drei \mathbb{K} -Vektorräume, $f \colon U \to V$ und $g \colon V \to W$ Homomorphismen und $h := g \circ f$. Zeigen Sie, dass

$$h^{\top} = f^{\top} \circ g^{\top}$$

gilt.