
Johannes Kepler University Linz (JKU)

Research Institute for Symbolic Computation (RISC)

Lecture Notes

FORMAL MODELLING

Wolfgang Windsteiger

CONTENTS

1 Modelling in Geometry 1
1.1 An Introductory Example . 1
1.2 Modelling Geometry in Algebra . 2

1.2.1 First Approach . 2
1.2.2 Improved Approach . 3
1.2.3 The General Model . 3
1.2.4 Deciding Solvability of a System of Polynomial Equations 5
1.2.5 Describing Frequently Used Geometrical Properties by Polynomials . . 6

1.3 A Generalization Beyond Geometry . 8

2 Modelling in Graph Theory 11
2.1 An Introductory Example . 11
2.2 Graph Theory . 12
2.3 Modelling the Shortest-Connection-Problem 16
2.4 An Algorithm for Solving the Shortest Path Problem 17
2.5 A Real-World Problem . 20

3 Modelling in Combinatorial Optimization 24
3.1 An Introductory Example . 24
3.2 Modelling the Packing Problem . 24

3.2.1 Bin Packing as a Linear Programming Problem 25
3.2.2 Heuristic Approximation Algorithms for the Bin Packing Problem . . . 28

i

INTRODUCTION

These lecture notes cover examples of formal modelling in three areas:

1. geometry,

2. graph theory, and

3. combinatorial optimization.

By formal modelling we mean in this context the exact formal specification of problems, where
the domains over which the problems are formulated are discrete or symbolic, in any case
non-continuous.

In the area of geometry, we will describe a method, how geometrical prove problems can
be formulated in such a way that they can be transformed into systems of algebraic equations,
and the solvability of these systems then corresponds to the truth of the original statement. In
this case, the domain is symbolic because we work on logical formulas expressing geometrical
configurations.

In the area of graph theory, we introduce the basic concepts of graph theory and formulate
one famous problem in graph theory, namely the shortest path problem. We present Dijkstra’s
algorithm for computing shortest paths in graphs with non-negative weights and prove why it
always finds a shortest path. In this case, the domain is discrete because we work with graphs
with finitely many vertices, edges, and paths.

In the area of combinatorial optimization we discuss the bin packing problem and outline
different flavours of the problem: the plain version of the problem, i.e. finding a number of
bins into which the objects can be packed, the decision problem derived from it, i.e. deciding
whether the objects can be packed into a given number of bins, and the optimization problem
derived from it, finding the minimal number of bins into which the objects can be packed.
We compare an exact solultion algorithm based in integer linear programming with a heuristic
approximation algorithm. In this case, the domain is discrete because we work with finitely
objects being packed into finitely many bins.

ii

BIBLIOGRAPHY

[1] B. Korte, J. Vygen. Kombinatorische Optimierung, Theorie und Algorithmen. Springer
Spektrum, 3. Auflage, ISBN 978-3-662-57690-8, https://doi.org/10.1007/978,
2018.

[2] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Volume A, Chap-
ters 1–38, Springer Berlin Heidelberg New York, ISBN 978-3-540-44389-6, 2003.

iii

CHAPTER 1
MODELLING IN GEOMETRY

In this chapter we present an example of an algebraic modeling of logical statements de-
rived from geometrical problems. More precisely, we show how geometrical problems can
be translated to systems of polynomial equations, and how the truth or falsity of the original
statement corresponds to solvability of the resulting system of equations. Finally, we present
an algorithm that can decide the solvability of systems of algebraic equations.

1.1 AN INTRODUCTORY EXAMPLE

Consider the very simple geometrical configuration illustrated in Figure 1.1:

• Given two points A and C and the line passing through A and C.

• Given a point B such that the line AB is perpendicular to the line AC.

• Given a point D such that the line CD is perpendicular to the line AC.

Then

• the lines AB and CD must be parallel.

A

C

B

D

Figure 1.1: Parallel lines

The logical statement describing the geometric situation is

∀
A,B,C,D

((perpendicular(A,B,A,C) ∧ perpendicular(C,A,C,D))⇒ parallel(A,B,C,D))

(1.1)

with appropriate predicates ‘perpendicular’ and ‘parallel’.

1

1.2 MODELLING GEOMETRY IN ALGEBRA

The first step in modelling geometry is to introduce a coordinate system. Using coordinates
we will then be able to describe properties such as ‘perpendicular’ and ‘parallel’ by polynomial
equalities and negated equalities. Continuing the example from above, let

A = (0, 0) B = (b1, b2) C = (c1, c2) D = (d1, d2).

1.2.1 First Approach

Using the coordinates as described above,

perpendicular(A,B,A,C) means
(
b1
b2

)
·
(
c1
c2

)
= b1c1 + b2c2 = 0 (1.2)

perpendicular(C,A,C,D) means
(
c1
c2

)
·
(
d1 − c1
d2 − c2

)
= c1(d1 − c1) + c2(d2 − c2) = 0

(1.3)

parallel(A,B,C,D) means
(
b2
−b1

)
·
(
d1 − c1
d2 − c2

)
= b2(d1 − c1)− b1(d2 − c2) = 0 (1.4)

For short we write the equalities in (1.2), (1.3), and (1.4) as p1 = 0, p2 = 0, and p3 = 0,
respectively. Essentially, formula (1.1) is now

∀
b1,b2,c1,c2,d1,d2

(p1 = 0 ∧ p2 = 0⇒ p3 = 0),

which is by de’Morgan’s rule equivalent to

¬ ∃
b1,b2,c1,c2,d1,d2

p1 = 0 ∧ p2 = 0 ∧ p3 6= 0. (1.5)

Now the trick: the inequality p3 6= 0 is equivalent to ∃
α0

α0p3 − 1 = 0, hence, (1.5) is equivalent

to

¬ ∃
b1,b2,c1,c2,d1,d2

p1 = 0 ∧ p2 = 0 ∧ ∃
α0

α0p3 − 1 = 0, (1.6)

and, under the assumption that α0 is a variable different from all previously used variables,
we finally arrive at

¬ ∃
b1,b2,c1,c2,d1,d2,α0

p1 = 0 ∧ p2 = 0 ∧ α0p3 − 1 = 0. (1.7)

It is easy to see, that (1.7) just expresses that there is no solution for the system of equations

p1 = 0 p2 = 0 α0p3 − 1 = 0, (1.8)

substituting back the original expressions for p1, p2, and p3 we have a system of polynomial
(algebraic) equations

b1c1 + b2c2 = 0

c1d1 − c21 + c2d2 − c22 = 0

α0b2d1 − α0b2c1 − α0b1d2 + α0b1c2 − 1 = 0.

2

Solving this system (e.g. with Mathematica) gives us solutions, e.g.

c1 = 0 c2 = 0 b1 = 0 b2 = 1 d1 = 1 d2 = 0 α0 = 1, (1.9)

which means that this does not constitute a proof of the original statement (1.1). In fact,
the statement is not true, because the solution of the system of equations gives a coun-
terexample. If we take A = C, B = (0, 1), and D = (1, 0), then the ‘line passing through
A and C ’ degenerates to a point such that the hypotheses ‘perpendicular(A,B,A,C)’ and
‘perpendicular(C,A,C,D)’ trivially become true whereas the conclusion ‘parallel(A,B,C,D)’
is false because AB and CD are perpendicular (and not parallel).

1.2.2 Improved Approach

Obviously, something must have gone wrong in the previous section, because the statement
under investigation is true. The system of equations derived in the previous section, whose
solvability should be equivalent to the statement that we want to prove, however, was an
inaccurate model, because it allowed the ‘wrong solution’ (1.9). Note, however, that clearly
C should be different from A when we talk about ’the line passing through A and C ’, but our
model did not contain any hypothesis expressing C 6= A. Strictly speaking, (1.9) is of course
a correct solution of the system of equations (check by substitution!), but the equations are a
wrong model for the original proof problem.

Using coordinates C 6= A means c1 6= 0 ∨ c2 6= 0. Applying the trick like in (1.6) again,
this is equivalent to

∃
α1

α1c1 − 1 = 0 ∨ ∃
α2

α2c2 − 1 = 0

which is equivalent to

∃
α1,α2

q1 = 0 with q1 = (α1c1 − 1)(α2c2 − 1).

In other words, (1.1) is equivalent to the unsolvability of

b1c1 + b2c2 = 0

c1d1 − c21 + c2d2 − c22 = 0

(α1c1 − 1)(α2c2 − 1) = 0

α0b2d1 − α0b2c1 − α0b1d2 + α0b1c2 − 1 = 0

If we pass this system of equations to Mathematica, it will in fact tell us that there is no
solution, so the original statement (1.1) is proved.

1.2.3 The General Model

Let us assume we have a geometrical configuration described by

p1 = 0 . . . pn = 0 q1 6= 0 . . . qm 6= 0

and a conclusion described by

c = 0,

3

where pi, qj , c ∈ Q[x1, . . . , xl] for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then

∀
x1,...,xl

(p1 = 0 ∧ . . . ∧ pn = 0 ∧ q1 6= 0 ∧ . . . ∧ qm 6= 0⇒ c = 0)

is equivalent to

¬ ∃
x1,...,xl

¬(p1 = 0 ∧ . . . ∧ pn = 0 ∧ q1 6= 0 ∧ . . . ∧ qm 6= 0⇒ c = 0),

which is in turn equivalent to

¬ ∃
x1,...,xl

p1 = 0 ∧ . . . ∧ pn = 0 ∧ q1 6= 0 ∧ . . . ∧ qm 6= 0 ∧ c 6= 0.

The negated equalities can then be turned into equalities by the so-called Rabinovich-Trick

¬ ∃
x1,...,xl

p1 = 0 ∧ . . . ∧ pn = 0 ∧ ∃
α1

α1q1 − 1 = 0 ∧ . . . ∧ ∃
αm

αmqm − 1 = 0 ∧ ∃
α0

α0c− 1 = 0,

and since we assume that α0, α1, . . . , αm are new variables distinct from x1, . . . , xn this is
equivalent to

¬ ∃
x1,...,xl,α0,α1,...,αm

p1 = 0 ∧ . . . ∧ pn = 0 ∧ α1q1 − 1 = 0 ∧ . . . ∧ αmqm − 1 = 0 ∧ α0c− 1 = 0.

This is nothing else than saying that the system of polynomial equations in the variables
x1, . . . , xl, α0, α1, . . . , αm

p1 = 0

...

pn = 0

α1q1 − 1 = 0

...

αmqm − 1 = 0

α0c− 1 = 0

has no solutions for x1, . . . , xl, α0, α1, . . . , αm.

EXAMPLE 1.1: THEOREM OF THALES

Let A and B be two points and M the midpoint between A and B. Let c be the circle
with center M through A and B, and let C be any point on c. Then AC and BC are
perpendicular.

We introduce coordinates and fix M = (0, 0). We have A = (a1, a2), B = (b1, b2), and
C = (c1, c2). Since M is the midpoint between A and B, we have

a1 + b1 = 0 a2 + b2 = 0,

and since C and A are on a circle, their distance to the center M must be equal, i.e.

a21 + a22 − c21 − c22 = 0.

4

AC and BC are perpendicular can be formulated as

(c1 − a1)(c1 − b1) + (c2 − a2)(c2 − b2) = 0.

Using the model from above with n = 3, m = 0, and l = 6 we have the following system
of equations in the variables a1, a2, b1, b2, c1, c2:

a21 + a22 − c21 − c22 = 0

a1 + b1 = 0

a2 + b2 = 0

α0((c1 − a1)(c1 − b1) + (c2 − a2)(c2 − b2))− 1 = 0

In this example it is easy to convince oneself that this system has no solution, because
equations 2 and 3 mean

a1 = −b1 a2 = −b2,

and substituting in equation 4 yields

α0(c
2
1 − a21 + c22 − a22)− 1 = 0. (1.10)

From equation 1 we get a21 + a22 = c21 + c22, which turns (1.10) into

α0 · 0− 1 = 0, i.e. − 1 = 0,

hence, the above system of polynomial equations has no solutions.

1.2.4 Deciding Solvability of a System of Polynomial Equations

In general, it is not as easy as in Example 1.1 to decide, whether a system of polynomial
equations has a solution or not. The theory of Gröbner bases plays a key role in this field, but
we will not go into much detail.

Given a set of polynomials G in x1, . . . , xn, a Gröbner basis of G is a set of polynomials B,
such that

∀
x1,...,xn

(∀
g∈G

g(x1, . . . , xn) = 0⇔ ∀
b∈B

b(x1, . . . , xn) = 0),

i.e. the zero set of G equals the zero set of B, and B has some special properties that make
the system ∀

b∈B
b = 0 ‘easier to solve’ than the original system ∀

g∈G
g = 0. In many respects, a

Gröbner basis of G is the polynomial analogy to the triangular form of a matrix representing
a system of linear equations. Fortunately1, there is an algorithm that computes a Gröbner
basis for any given set of polynomials G. Similar to Gaussian elimination, the Gröbner basis
algorithm subsequently eliminates variables by a process called polynomial reduction, which
is a generalization of the univariate polynomial division to multivariate polynomials. Every

1The concept of Gröbner bases and, most importantly, the first algorithm to compute a Gröbner basis for arbitrary
G were invented by Bruno Buchberger, the founder of RISC, the Research Institute for Symbolic Computation at
JKU Linz.

5

computer algebra system (like Mathematica, Maple, or Sage) offers a command to compute
Gröbner bases, in Mathematica this command is called GroebnerBasis.

THEOREM 1.2

A system of polynomial equations

g1 = 0, . . . , gn = 0

has no solutions over C if and only if the Gröbner basis of {g1, . . . , gn} contains a constant
polynomial unequal to 0.

EXAMPLE 1.3: THALES WITH GRÖBNER BASIS

Using Mathematica, we compute

GroebnerBasis[{a21 + a22 − c21 − c22, a1 + b1, a2 + b2,
α0((c1 − a1)(c1 − b1) + (c2 − a2)(c2 − b2))− 1}, {a1, a2, b1, b2, c1, c2, α0}]

and the answer is {1}, thus, the Gröbner basis contains the constant polynomial 1 and
the system of equations corresponding to the Theorem of Thales is unsolvable, therefore
the theorem is proven.

1.2.5 Describing Frequently Used Geometrical Properties by Polynomials

In this section we assume some coordinate system. We will collect some polynomial equations
describing frequently used properties in geometry.

THEOREM 1.4

Let

X1 = (x1y1) X2 = (x2y2) X3 = (x3y3) X4 = (x4y4) .

1. X1, X2, and X3 are collinear if and only if

det(

 1 x1 y1
1 x2 y2
1 x3 y3

) = 0.

2. X1, X2, X3, and X4 are collinear if and only if

det(

1 x1 y1 x1

2 + y1
2

1 x2 y2 x2
2 + y2

2

1 x3 y3 x3
2 + y3

2

1 x4 y4 x4
2 + y4

2

) = 0.

3. X1X2 and X3X4 are perpendicular if and only if

(x2 − x1)(x4 − x3) + (y2 − y1)(y4 − y3) = 0.

6

4. X1X2 and X3X4 are parallel if and only if

(y2 − y1)(x4 − x3)− (x2 − x1)(y4 − y3) = 0.

EXAMPLE 1.5: THEOREM OF PAPPUS

Given one set of collinear points R, S, and T , and another set of collinear points U ,
V , and W , s.t. R, S, and U and R, S, and V , respectively, are not collinear. Then the
intersection points X, Y , and Z of line pairs RV and SU, RW and TU, SW and TV are
collinear, see Figure 1.2. We introduce coordinates:

R = (r1r2) S = (s1s2) T =
(
t1
t2

)
U = (u1u2) V = (v1v2) W = (w1

w2)

X = (x1x2) Y = (y1y2) Z = (z1z2) .

That point X is the intersection of RV and SU means that both R, V , and X as well as
S, U , and X are collinear, and by Theorem 1.4 this can be described by

det(

 1 r1 r2
1 v1 v2
1 x1 x2

) = −r2v1 + r1v2 + r2x1 − r1x2 − v2x1 + v1x2 = 0

det(

 1 s1 s2
1 u1 u2
1 x1 x2

) = −s2u1 + s1u2 + s2x1 − s1x2 + u1x2 − u2x1 = 0

Applying the same technique for the remaining hypotheses and the conclusion of the
theorem we arrive at a model with n = 8, m = 2, and l = 18

−r2v1 + r1v2 + r2x1 − r1x2 + v1x2 − v2x1 = 0

−s2u1 + s1u2 + s2x1 − s1x2 + u1x2 − u2x1 = 0

−r2w1 + r1w2 + r2y1 − r1y2 + w1y2 − w2y1 = 0

−t2u1 + t1u2 + t2y1 − t1y2 + u1y2 − u2y1 = 0

−s2w1 + s1w2 + s2z1 − s1z2 + w1z2 − w2z1 = 0

−t2v1 + t1v2 + t2z1 − t1z2 + v1z2 − v2z1 = 0

−r2s1 + r1s2 + r2t1 − r1t2 + s1t2 − s2t1 = 0

−u2v1 + u1v2 + u2w1 − u1w2 + v1w2 − v2w1 = 0

α1 (−r2s1 + r1s2 + r2u1 − r1u2 + s1u2 − s2u1)− 1 = 0

α2 (−r2s1 + r1s2 + r2v1 − r1v2 + s1v2 − s2v1)− 1 = 0

α0 (−x2y1 + x1y2 + x2z1 − x1z2 + y1z2 − y2z1)− 1 = 0

The Gröbner basis of the set of left-hand sides of these equations is in fact {1}, hence,
the Theorem of Pappus is proved.

7

U

V

W

R S T

X Y Z

Figure 1.2: Theorem of Pappus

1.3 A GENERALIZATION BEYOND GEOMETRY

Statements derived from geometrical theorems usually have the form of universally quantified
implications. We will now see that not only these can be translated into systems of polynomial
equations. The same technique as shown in the previous section can be applied to arbitrary
universally quantified boolean combinations of polynomial equalities2. We want to prove

∀
x1,...,xl

Φ, (1.11)

where Φ is a boolean combination of polynomial equations with polynomials in Q[x1, . . . , xl].
First we rewrite the statement as

¬ ∃
x1,...,xl

¬Φ,

and then we convert ¬Φ into conjunctive normal form, thus, (1.11) can be written as

¬ ∃
x1,...,xl

(Φ1,1 ∨ . . . ∨ Φ1,j1) ∧ . . . ∧ (Φn,1 ∨ . . . ∨ Φn,jn), (1.12)

where each Φi,j has the form either Pi,j = 0 or ¬(Pi,j = 0). Now we introduce new polyno-
mials

Qi,j :=

{
Pi,j if Φi,j has the form Pi,j = 0

αi,jPi,j − 1 if Φi,j has the form ¬(Pi,j = 0)

with new variables αi,j . Note that the αi,j can be thought of as existentially quantified in
Qi,j = 0, compare to the Rabinovich-Trick explained in the previous section. Since the αi,j

2Note that inequations of the form p 6= 0 are covered in this setting as well because p 6= 0 ≡ ¬(p = 0), hence,
an inequation is a boolean combination of an equality.

8

are all new and distinct from x1, . . . , xl the existential quantifiers can be pushed outside such
that (1.12) can be written as

¬ ∃
x1,...,xl,{αi,j}

(Q1,1 = 0 ∨ . . . ∨Q1,j1 = 0) ∧ . . . ∧ (Qn,1 = 0 ∨ . . . ∨Qn,jn = 0).

The {αi,j} in the existential quantifier should indicate that we quantify over all αi,j that occur
in the Qi,j . Now remember that a product is zero if and only if one of the factors is zero3, in
other words

Qi,1 = 0 ∨ . . . ∨Qi,ji = 0 if and only if Qi,1 · . . . ·Qi,ji = 0,

thus, finally

¬ ∃
x1,...,xl,{αi,j}

(Q1,1 · . . . ·Q1,j1 = 0) ∧ . . . ∧ (Qn,1 · . . . ·Qn,jn = 0).

Hence, the original statement (1.11) is equivalent to the unsolvability of the system of poly-
nomial equations

Q1,1 · . . . ·Q1,j1 = 0

...
...

...

Qn,1 · . . . ·Qn,jn = 0,

which can be decided by computing

B = GroebnerBasis[{Q1,1 · . . . ·Q1,j1 , . . . , Qn,1 · . . . ·Qn,jn}]

and checking, whether B contains a constant polynomial unequal to 0.

EXAMPLE 1.6

We come back to our introductory example (1.1). It is easy to see that this statement can
be generalized: if we have two perpendicular lines, then being parallel to one of them is
obviously the same as being perpendicular to the other. To make a theorem out of that
we need two side-conditions, which guarantee that the given lines will not degenerate
to points, in other words,

∀
A,B,C,D

A 6= C ∧A 6= B ∧ perpendicular(A,B,A,C)⇒

perpendicular(C,A,C,D)⇔ parallel(A,B,C,D)

After introducing coordinates

A = (0, 0) B = (b1, b2) C = (c1, c2) D = (d1, d2)

3We used the product trick also when we expressed the condition c1 6= 0 ∨ c2 6= 0 in Section 1.2.2.

9

the conjunctive normal form of the negated expression inside the quantifier gives

(b1 6= 0 ∨ b2 6= 0) ∧ (c1 6= 0 ∨ c2 6= 0) ∧
∧ (¬parallel(A,B,C,D) ∨ ¬perpendicular(C,A,C,D)) ∧
∧ (parallel(A,B,C,D) ∨ perpendicular(C,A,C,D)) ∧

∧ perpendicular(A,B,A,C)

Using Theorem 1.4 we get the following combination of equations an inequations

(b1 6= 0 ∨ b2 6= 0) ∧ (c1 6= 0 ∨ c2 6= 0) ∧
∧ (b2 (d1 − c1)− b1 (d2 − c2) 6= 0 ∨ −c1 (d1 − c1)− c2 (d2 − c2) 6= 0) ∧
∧ (b2 (d1 − c1)− b1 (d2 − c2) = 0 ∨ −c1 (d1 − c1)− c2 (d2 − c2) = 0) ∧

∧ b1c1 + b2c2 = 0.

Applying the Rabinovich-Trick and combining disjunctions to products results in the fol-
lowing set of polynomials

{−α0b1 + α1α0b1b2 − α1b2 + 1,−α2c1 + α3α2c1c2 − α3c2 + 1,

−α4α5b2c
3
1 + α4α5b1c2c

2
1 + α4b2c1 − α4α5b2c

2
2c1 − α4b1c2 + α4α5b1c

3
2 +

2α4α5b2c
2
1d1 − α4α5b1c

2
1d2 − α4α5b2c1d

2
1 − α4α5b1c2c1d1 + α4α5b2c2c1d2 +

α4α5b1c1d1d2 + α4α5b1c2d
2
2 + α4α5b2c

2
2d1 − 2α4α5b1c

2
2d2 − α4α5b2c2d1d2 − α4b2d1 +

α4b1d2 − α5c
2
1 − α5c

2
2 + α5c1d1 + α5c2d2 + 1,

2b2c
2
1d1 − b1c21d2 − b2c1d21 − b1c2c1d1 + b2c2c1d2 + b1c1d1d2 + b1c2d

2
2 + b2c

2
2d1 −

2b1c
2
2d2 − b2c2d1d2 − b2c31 + b1c2c

2
1 − b2c22c1 + b1c

3
2,

b1c1 + b2c2},

whose Gröbner basis is again {1}, hence, the statement is proved.

10

CHAPTER 2
MODELLING IN GRAPH THEORY

Many practical problems concerning relationships, networks, scheduling, or assignments can
be modelled mathematically in the language of graph theory. In this chapter, we present
some basic concepts of graph theory and one example problem with an elegant algorithmic
solution.

2.1 AN INTRODUCTORY EXAMPLE

In GoogleMaps as well as in many modern cars you have the possibility to enter two geo-
graphical locations A and B and get “the shortest route” from A to B. Usually there are
different choices for how to interpret “shortest”. Of course, it will in most cases not mean
“shortest euclidean distance”, because in that case the solution would be trivial, hence un-
interesting, namely the straight line through A and B. What makes the problem interesting
and non-trivial is the underlying “network of streets”, where a “route” from A to B is only
allowed to follow these streets. Moreover, “shortest” can then mean “minimal w.r.t. length” or
“minimal w.r.t. duration”, i.e. the “quickest” route. Last but not least, various criteria can be
applied for choosing appropriate streets, e.g. avoiding toll-road, avoiding highways, prefer
scenic roads, calculate bicycle routes, etc. As an example see Figure 2.1, which shows the
quickest bicycle route from JKU Linz to the RISC Institute in Hagenberg1.

Figure 2.1: Google Maps Route Planner

1Note, however, that 1h27 for not even 20km is a bit exaggerated.

11

2.2 GRAPH THEORY

Graphs will turn out to be an appropriate mathematical model for a “network of streets” as
needed in the routing example in Section 2.1. Informally speaking, in the heart of the concept
of a graph is a collection of entities, called vertices, with connections between them, called
edges or arcs, see Figure 2.2. There are different types of graphs, depending on whether for
instance

• the connections are oriented or not,

• there can be more than one edge between to vertices,

• vertices connected by an edge must be distinct,

• edges have values associated,

• vertices have values associated,

• etc. etc.

B

3

2

1

A

Figure 2.2: A typical graph

DEFINITION 2.1: UNDIRECTED SIMPLE GRAPH, DIRECTED SIMPLE GRAPH

Let V be a set. The pair G = (V,E) is called an undirected simple graph if and only if

E ⊆ P (V) and ∀
a∈E
|a| = 2.

The pair (V,E) is called a directed simple graph if and only if

E ⊆ V 2 and ∀
a∈E

a1 6= a2.

We call G a simple graph if and only if it is an undirected or a directed graph. If G
is a graph, then V (G) := G1 and E(G) := G2 are called the vertices and edges of G,
respectively.

Note that we use sets for representing edges, which implies that there cannot be multi-
ple edges between two vertices. For certain applications, however, it is necessary to allow

12

multiple edges between vertices. In these cases, the edges E can be defined as a multiset
E = (A,m), where

A = {a ∈ P (V) | |a| = 2} (for undirected graphs)

A = {a ∈ V 2 | a1 6= a2} (for directed graphs)

and

m : A→ N0.

The set A is the set of potential edges, and the function m gives the multiplicity of each edge,
including the case m(a) = 0 meaning that the graph does not contain the edge a. For a
multiset E = (A,m) we write a ∈ E if and only if a ∈ A and m(a) ≥ 1.

In the multiset representation, the multiplicity of an edge tells us only, how many connec-
tions we have, but these are indistinguishable. If we want to have distinct edges, then we
define the edges as E = (X, e), where X is a set and

e : X → A with A as above.

For E = (X, e) we write a ∈ E if and only if ∃
x∈X

e(x) = a.

EXAMPLE 2.2

Figure 2.3 shows different types of graphs. The leftmost is an undirected simple graph

G1 = ({1, 2, 3}, {{1, 2}, {2, 3}}),

second from left is a directed simple graph

G2 = ({1, 2, 3}, {(1, 2), (2, 1), (1, 3), (2, 3)}).

Second from right is not an undirected simple graph because it contains a double edge
between 1 and 2, which can be defined as

G3 = ({1, 2, 3}, ({{1, 2}, {1, 3}, {2, 3}},m)) with m defined by

a m(a)

{1, 2} 2
{1, 3} 0
{2, 3} 1

Note that one cannot distinguish the two edges between 1 and 2. The rightmost is not a
simple directed graph either because it contains two distinct edges a and b from 1 to 2,
which can be defined as

G4 = ({1, 2, 3}, ({a, b, c}, e)) with e defined by

x e(x)

a (1, 2)
b (1, 2)
c (2, 3)

By definition, a simple graph cannot contain loops, i.e. edges connecting a vertex with
itself. In an undirected graph, this would be an edge {u, u}, but |{u, u}| = 1, whereas in a

13

1 G1

2 3

1 G2

2 3

1 G3

2 3

1 G4

2 3

ab

c

Figure 2.3: Different types of graphs

directed graph it would be an edge a = (u, u), but a1 = u = a2. If loops should be permitted
the restrictions |a| = 2 and a1 6= a2, respectively, have to be relaxed.

From now on, if we say G is a graph then we mean a graph in one of the representations
mentioned above. If we say G is a simple graph then we mean a simple undirected or a simple
directed graph. If G is an undirected graph then we use uv as an abbreviation for an edge
{u, v} ∈ E(G), if G is directed then uv stands for an edge (u, v) ∈ E(G).

DEFINITION 2.3: NEIGHBOUR, NEIGHBOURHOOD

Let G be a graph. The vertex v is a neighbour of vertex u if and only if uv ∈ E(G).
Furthermore, we call

NG(u) := {v ∈ V (G) | v is a neighbour of u}

the neighbourhood of u (in G).

EXAMPLE 2.4

Using the graphs from Figure 2.3,

NG1(1) = {2} NG1(2) = {1, 3} NG1(3) = {2}
NG2(1) = {2, 3} NG2(2) = {1, 3} NG2(3) = {}
NG3(1) = {2} NG3(2) = {1, 3} NG3(3) = {2}
NG4(1) = {2} NG4(2) = {3} NG4(3) = {}

DEFINITION 2.5: WALK, PATH

Let G be a graph, n ≥ 1, and a, b ∈ V (G). A finite sequencea w : N1,2n+1 → V (G)∪E(G)
is called a walk of length n from a to b in G if and only if

1. ∀
0≤i≤n

w2i+1 ∈ V (G),

2. ∀
1≤i≤n

w2i ∈ E(G),

3. w1 = a and w2n+1 = b, and

4. ∀
1≤i≤n

w2i = w2i−1w2i+1.

14

Let w be a walk of length n from a to b in G, then the subsequences

V (w) : N1,n+1 → V (G), i 7→ w2i−1 E(w) : N1,n → E(G), i 7→ w2i

are the sequence of vertices of w and the sequence of edges of w, respectively.
A finite sequence t : N1,2n+1 → V (G) ∪ E(G) is called a trail of length n from a to b

in G if and only if t is a walk of length n from a to b in G and E(t) is injective (from N1,n

to E(G)).
A finite sequence p : N1,2n+1 → V (G) ∪ E(G) is called a path of length n from a to

b in G if and only if p is a trail of length n from a to b in G and V (p) is injective (from
N1,n+1 to V (G)).

aReminder: Nm,n := {i ∈ N0 | m ≤ i ≤ n}.

A walk is an arbitrary sequence of vertices connected by appropriate edges. A trail does not
use any edge twice and a path in addition does not visit any vertex twice. A walk that is not a
trail must use at least one edge more than once, which implies that it also visits some vertices
more than once, namely those vertices that are connected by that edge.

The length n of a walk/trail/path addresses the number of edges in that walk/trail/path.
If we omit the length or the start and end then we assume the respective entities existentially
quantified, e.g. if p is a path from a to b in G then we mean a path of some length from a to
b in G, or if p is a path of length n in G then we mean a path of length n from somewhere to
somewhere in G, or if p is a path in G then we mean a path of some length from somewhere to
somewhere in G.

EXAMPLE 2.6

w = (2, (2, 1), 1, (1, 2), 2, (2, 1), 1, (1, 3), 3) is a walk of length 4 from 2 to 3 in G2.

V (w) = (2, 1, 2, 1, 3) E(w) = ((2, 1), (1, 2), (2, 1), (1, 3)),

w is neither a trail nor a path in G2.
t = (2, (2, 1), 1, (1, 2), 2, (2, 3), 3) is a trail of length 3 from 2 to 3 in G2.

V (t) = (2, 1, 2, 3) E(t) = ((2, 1), (1, 2), (2, 3)),

t is not a path in G2.
p = (2, (2, 1), 1, (1, 3), 3) is a path of length 2 from 2 to 3 in G2.

V (p) = (2, 1, 3) E(p) = ((2, 1), (1, 3)).

DEFINITION 2.7: WEIGHTED GRAPH

The triple G = (V,E, c) is called a weighted graph if and only if (V,E) is a graph and
c : E → R. We call c the cost function of G and c(e) the costs of an edge e.

All special properties of the graph (V,E), e.g. being simple, directed, undirected, translate
directly to its weighted variant (V,E, c). A sequence is a walk/trail/path in (V,E, c) if and
only if it is a walk/trail/path in (V,E).

15

DEFINITION 2.8: EXTENDED COST FUNCTION, DISTANCE

Let G = (V,E, c) be a weighted graph and F ⊆ E. Then we extend the cost function c
to

c(F) :=
∑
e∈F

c(e).

Let w be a walk of length n from a to b in G, thena

c(w) :=
∑

e∈E(w)

c(e).

The distance from a to b in G is

distG(a, b) := min({c(w) | w is a walk from a to b in G}).
aStrictly speaking, e ∈ E(w) does not make sense, because E(w) is, by definition, a finite sequence and

not a set. e ∈ E(w) is meant as a conveniant shortcut notation for ∃
1≤i≤n

E(w)i = e.

2.3 MODELLING THE SHORTEST-CONNECTION-PROBLEM

Our original problem from Section 2.1 can now be nicely formulated in the language of graph
theory. Given a network of streets, we define the vertices

V := {C | there are streets s and t crossing at C}.

Then all streets split into street segments between crossings, in other words, a street segment
is characterized by its endpoints, i.e. two crossings c1 and c2 on the same street such that no
other crossing lies between c1 and c2. The street segments will become the edges connecting
their endpoint crossings. If a street segment between c1 and c2 can be travelled in both
directions, then an undirected edge {c1, c2} is an appropriate model. If it can only be used
in one direction, say from c1 to c2, then a directed edge (c1, c2) is an appropriate model. For
typical street networks, directed edges are the better choice because these allow to model
one-way streets and in case both directions are available we can use (c1, c2) and (c2, c1), thus

E := {(c1, c2) ∈ V 2 | there is a street segment from c1 to c2}.

Every street segment (c1, c2) has costs associated, which can be the geographical distance
between the c1 and c2 or the time required to travel from c1 to c2, depending on the appli-
cation. Note, that the model with directed edges gives also more flexibility in this regard,
because it allows to assign different times for the two directions, which is useful for instance
when the street segment is a mountain road, where it is usually faster going down than going
up. Note that the costs will always be non-negative, i.e.

c : E → R+
0 , (x, y) 7→ “costs” for going from x to y

The question of finding the “shortest connection” from A to B on the underlying network
of roads is then just the following problem:

16

PROBLEM 2.9: SHORTEST PATH PROBLEM

Given: The graph G = (V,E, c) with appropriate cost function c and A,B ∈ V .

Find: d = distG(A,B) and p such that p is a path from A to B in G and c(p) = d.

Note that it is sufficient to find a path, we need not search for walks or trails. Assume a walk

w = (A, e1, . . . , ek, x, . . . , x, el, . . . , en, B)

from A to B in G containing vertex x twice. Then take

w̄ = (A, e1, . . . , ek, x, el, . . . , en, B),

which certainly gives also a walk from A to B in G with c(w̄) ≤ c(w), such that we can always
construct a walk with costs at most c(w) avoiding multiple vertices. Such a walk must be a
path.

Note also that we modeled the graph above as a simple graph, i.e. a graph without
multiple edges and loops. If the original street network contains multiple edges, which might
be the case in real world (think of examples!), then we choose the one with least cost and
only put this edge into E, hence avoiding multiple edges. Consider a and b being both edges
from x to y and c(a) ≤ c(b) and assume a path

p = (A, e1, . . . , x, b, y, . . . , en, B)

from A to B in G. Then take

p̄ = (A, e1, . . . , x, a, y, . . . , en, B),

which certainly gives also a path from A to B in G with c(p̄) ≤ c(p), such that we can always
construct a path with costs at most c(p) avoiding edge b. Similary, we can eliminate loops
contained in G. Consider a being a loop from x to x and assume a trail

p = (A, e1, . . . , ek, x, a, x, el, . . . , en, B)

from A to B in G. Then take

p̄ = (A, e1, . . . , ek, x, el, . . . , en, B),

which certainly gives also a path from A to B in G with c(p̄) ≤ c(p) since c(a) ≥ 0, such that
we can always construct a path with costs at most c(p) avoiding loop a.

2.4 AN ALGORITHM FOR SOLVING THE SHORTEST PATH PROBLEM

We will now briefly describe Dijkstra’s algorithm for solving the shortest path problem. In
fact, the algorithms solves a slightly more general problem, namely it computes distG(A, v)
for all v ∈ V \ {A} and it allows to reconstruct shortest paths from A to v for all v ∈ V \ {A}.

The basic idea of the algorithm is to maintain two sets of vertices C and O = V \C, where

• C contains the closed vertices v, for which distG(A, v) is already known and

17

• O are the remaining open vertices v, for which only a tentative distance l(v) from A is
known. In fact, l(v) is the shortest distance from A on a path containing only vertices in
C except the final vertex v.

Data: G = (V,E, c) a simple weighted directed graph, A ∈ V .
Result: distG(A, v) for all v ∈ V ,

preG(v) for all v ∈ V such thata P � ((preG(v), v), v) is a shortest path from
A to v in G, where P is a shortest path from A to preG(v) in G.

C = ∅, O = V , l(A) = 0
for v ∈ V \ {A} do

l(v) =∞
end
while O 6= ∅ do

v = such an o ∈ O with l(o) ≤ l(x) for all x ∈ O
C = C ∪ {v}, O = O \ {v}
distG(A, v) = l(v)
for w ∈ NG(v) do

if l(w) > distG(A, v) + c(vw) then
l(w) = distG(A, v) + c(vw)
preG(w) = v

end
end

end
Algorithm 1: Dijkstra’s Algorithm

aWe write a � b for the concatenation of tuples a and b.

Upon termination of the algorithm distG(A, v) contains the shortest distance from A to v
in G for all vertices v. If distG(A, v) =∞ then there is no path from A to v in G.

B

3

2

1

A
5

6 3

1

5

4

1

Figure 2.4: A weighted graph

EXAMPLE 2.10

Let us consider the graph depicted in Figure 2.4. After initialization we have C = ∅,
O = V and

v A 1 2 3 B
l(v) 0 ∞ ∞ ∞ ∞

18

In the first run through the while-loop, we choose v = A, hence C = {A} and
O = {1, 2, 3,B}. We set distG(A,A) = 0 and compute NG(A) = {1, 2}, hence we update

v A 1 2 3 B
l(v) 0 6 5 ∞ ∞

and set preG(1) = A and preG(2) = A. Next we choose v = 2, hence C = {A, 2} and
O = {1, 3,B}. We set distG(A, 2) = 5 and compute NG(2) = {3,B}, hence we update

v A 1 2 3 B
l(v) 0 6 5 10 9

and set preG(3) = 2 and preG(B) = 2. Next we choose v = 1, hence C = {A, 2, 1} and
O = {3,B}. We set distG(A, 1) = 6 and compute NG(1) = {2, 3}, hence we update

v A 1 2 3 B
l(v) 0 6 5 7 9

and set preG(3) = 1. Next we choose v = 3, hence C = {A, 2, 1, 3} and O = {B}. We set
distG(A, 3) = 7 and compute NG(3) = {B}, hence we update

v A 1 2 3 B
l(v) 0 6 5 7 8

and set preG(B) = 3. Finally, we take v = B, hence C = {A, 2, 1, 3,B} and O = ∅. We set
distG(A,B) = 8, no more updates necessary and we exit the while-loop.

We have all distances from A to v in distG(A, v), and we can reconstruct the shortest
path using preG(v). The final path is

(A, (A, 1), 1, (1, 3), 3, (3,B),B).

Why does Dijkstra’s algorithm work? The algorithm maintains a loop invariant, namely

∀
x∈C,u∈NG(x)

l(u) ≤ distG(A, x) + c(xu) (2.1)

∀
x∈C

l(x) = distG(A, x) (2.2)

∀
o∈O

l(o) ≥ distG(A, o). (2.3)

Before the algorithm enters the while-loop for the first time, (2.1) and (2.2) clearly hold due
to C = ∅, and (2.3) holds because of O = V and l(A) = 0 = distG(A,A) and l(o) = ∞ ≥
distG(A, o) for all o 6= A. Now assume (2.1), (2.2), and (2.3) hold at the beginning of one
pass through the loop, we will show that (2.1), (2.2), and (2.3) then also hold at the end of
that pass, i.e. we have to show

∀
x∈C∪{v},u∈NG(x)

l(u) ≤ distG(A, x) + c(xu) (2.4)

∀
x∈C∪{v}

l(x) = distG(A, x) (2.5)

∀
o∈O\{v}

l(o) ≥ distG(A, o). (2.6)

Proof of (2.4): Let x ∈ C∪{v} and u ∈ NG(x). In case x ∈ C, l(u) ≤ distG(A, x)+c(xu) is true
by assumption (2.1). Now let x = v. By the algorithm, we have l(w) ≤ distG(A, v) + c(vw)
for all w ∈ NG(v) after finishing the for-loop, hence l(u) ≤ distG(A, x) + c(xu).

19

Proof of (2.5): Let x ∈ C ∪ {v}. In case x ∈ C, l(x) = distG(A, x) is true by assumption (2.2).
Now let x = v. First of all we show l(x) ≤ distG(A, x) by contradiction, hence, we assume
l(x) > distG(A, x), i.e. there must be a path P from A to x in G with c(P) = distG(A, x) <
l(x). P contains at least one vertex in O since x = v ∈ O, hence, there is a minimal i such
that pi := V (P)i ∈ O. We then have l(pi) ≤ distG(A, pi) because

case i = 1: then p1 = A and l(p1) = l(A) = 0 = distG(A,A) = distG(A, p1) and

case i > 1: from the minimality of i we get pi−1 := V (P)i−1 ∈ C and clearly pi ∈ NG(pi−1),
hence

l(pi)
(2.1)
≤ distG(A, pi−1) + c(pi−1pi) = c(P1:2i−1) = distG(A, pi).

Note that the last equality holds, because P is a path with lowest costs from A to x.
Therefore, any subpath of P from A to b must be one with lowest costs to b, because
otherwise P would not have lowest costs to x.

Finally, we have the contradiction

l(x) = l(v)
choice of v
≤ l(pi) ≤ distG(A, pi)

non-negative weights
≤ distG(A, x) < l(x).

Thus, l(x) ≤ distG(A, x) and together with l(x) = l(v) ≥ distG(A, v) = distG(A, x) by as-
sumption (2.3) since v ∈ O we have l(x) = distG(A, x).
Proof of (2.6): Let o ∈ O \ {v}. In case l(o) = ∞ then l(o) = ∞ ≥ distG(A, o) is trivial.
Otherwise l(o) reflects the costs of a concrete path from A to o, hence l(o) ≥ distG(A, o), by
definition of distG(A, o).

REMARK 2.11

As already mentioned earlier the algorithm computes the shortest distances from A to
all v in G. If one is only interested in the shortest distances from A to B then the while-
loop can be terminated as soon as v = B has been chosen and distG(A,B) has been set.
Those distG(A, v) that have been set until then are the true shortest distances, but there
may be vertices v, for which distG(A, v) is still undefined.

REMARK 2.12

For a real implementation of Dijkstra’s algorithm one should use special data-structures
for storing O such that the choice of v as the o ∈ O with minimal tentative distance can
be performed efficiently. Keywords in this respect are k-heaps or Fibonacci heaps.

2.5 A REAL-WORLD PROBLEM

As an example, we used a graph representing the street network of New York City, which is
freely available from http://users.diag.uniroma1.it/challenge9/download.shtml. Ge-
ographical coordinates of all vertices are also available such that the street crossings can
actually be visualized on a map of New York City. We have only used a small fragment of the

20

Figure 2.5: Street crossings defining street segments

vertives and edges such that computation of shortest paths was still feasible in Mathematica.
Figures 2.5 shows the street crossings with their real-world positions on a map and Figure 2.6
shows the whole graph with all connections between vertices.

We then chose the west-most point as starting point A and the east-most point as the end
point B and compute a shortest path using the Mathematica command FindShortestPath,
which computes a path of length 22. The abstract graph with the edges of the shortest path
highlighted and the corresponding path on the New Yourk City map are shown in Figures 2.7
and 2.8.

21

Figure 2.6: Street crossings and street segments as a directed graph

Figure 2.7: Street crossings defining street segments and the shortest path between two points

22

Figure 2.8: The shortest path on the map

23

CHAPTER 3
MODELLING IN COMBINATORIAL OPTIMIZATION

Combinatorial optimization usually deals with the optimization of an objective function over
a finite domain. In most of the cases the variables are restricted to integers or natural numbers
and there are restrictions that allow only finitely many feasible solutions. Although in principle
possible, exhaustive search through all finitely many feasible solutions is practically not an
option because of their huge number. Probably the most famous combinatorial optimization
problem is the travelling salesman problem, other examples are the minimum spanning tree
problem, the knapsack problem, or the bin packing problem.

3.1 AN INTRODUCTORY EXAMPLE

Suppose we run an online shop and we deliver our goods in boxes of maximum capacity C.
We have a concrete order with n items of sizes s1, . . . , sn, respectively. The size of an item
could be for instance the weight or the volume and the capacity would then be the maximum
weight allowed or the maximum space available in the box. The question is how to pack the
items into a minimal number of boxes such that all capacity restrictions are still satisfied. In
case the capacity is interpreted as volume we neglect the geometrical problem of fitting items
of a certain shape into the boxes having a certain shape, i.e. if we have items with a total
volume of x then we assume these items fit into a box with volume V ≥ x. It is clear that in
practice, by the geometry of the box and the items, this might lead to inappropriate solutions.
As a simple example, consider a sphere of volume 1, which has a diameter of ≈ 1.24. Clearly,
the sphere does not fit into a unit cube with side lenghts 1, although the volume restriction
would be satisfied.

3.2 MODELLING THE PACKING PROBLEM

The problem described in Section 3.1 is known in literature as the bin packing problem.

PROBLEM 3.1: BIN PACKING PROBLEM BPP(a,A)

Given: Positive numbers a1, . . . , an, A.

Find: k ∈ N and p : N1,n → N1,k such that

∀
1≤j≤k

∑
i

p(i)=j

ai ≤ A.

We consider n items I1, . . . , In and need to find a number k of bins B1, . . . , Bk such that each
Ii goes into one of the Bj . The packing function p assigns each item index i a bin index j,

24

and p(i) = j means that item Ii is packed into bin Bj . If k and p satisfy the above conditions
we call the pair (k, p) a feasible solution (for BPP(a,A)).

Often, in particular in the context of complexity theory, problems are stated as decision
problems. For the bin packing problem, this variant is the following.

PROBLEM 3.2: BIN PACKING DECISION PROBLEM BPDP(a,A,k)

Given: Positive numbers a1, . . . , an, A and k ∈ N.

Question: Does there exist a function p : N1,n → N1,k such that (k, p) a feasible solution
for BPP(a,A)?

If there is a feasible solution (k, p) for the bin packing problem then of course (m, q) is again
a feasible solution for all m > k and q : N1,n → N1,m such that q(i) = p(i) for all 1 ≤ i ≤ n,
hence there are infinitely many solutions. It is then pretty natural to ask for the best possible
solution.

PROBLEM 3.3: BIN PACKING OPTIMIZATION PROBLEM BPOP(a,A)

Given: Positive numbers a1, . . . , an, A.

Find: k ∈ N and p : N1,n → N1,k such that

1. (k, p) a feasible solution for BPP(a,A) and

2. k is minimal, i.e.

∀
m<k

∀
q : N1,n→N1,m

(m, q) is not a feasible solution for BPP(a,A).

3.2.1 Bin Packing as a Linear Programming Problem

A first approach for solving the optimal bin packing problem is to re-formulate the problem
as a linear programming (linear optimization) problem. First we observe that k ≤ n. We
introduce binary decision variables αij for 1 ≤ i, j ≤ n and βj for 1 ≤ j ≤ n with the following
meaning:

αij :=

{
1 item Ii goes into bin Bj
0 otherwise

βj :=

{
1 bin Bj will be occupied
0 otherwise

The feasibility of a solution for the bin packing problem can then be described by

∀
1≤j≤n

n∑
i=1

αijai ≤ Aβj (3.1)

∀
1≤i≤n

n∑
j=1

αij = 1, (3.2)

where (3.1) captures the capacity restrictions for each bin and (3.2) enforces that each ar-
ticle goes into exactly one bin. The number of bins used is obviously

∑n
j=1 βj , hence, (3.1)

25

and (3.2) together with
n∑
j=1

βj −→ Min (3.3)

form an integer linear programming problem with the integer variables

αij ∈ {0, 1} for 1 ≤ i, j ≤ n and βj ∈ {0, 1} for 1 ≤ j ≤ n.

The standard form of a linear programming problem for variables x ∈ Rt is usually given as

M · x ≡ b with M ∈ Rs×t, b ∈ Rs,≡ ∈ {≤,=,≥}
c · x −→ Min with c ∈ Rt

For the bin packing problem, the setting from above results in x ∈ Rn2+n with

xv :=

{
αq+1,r+1 1 ≤ v ≤ n2, (q, r) = QuotRem(v − 1, n)

βv−n2 n2 + 1 ≤ v ≤ n2 + n.

Since v = nq + r + 1 we get

αij = xn(i−1)+j βj = xn2+j .

The Matrix M The capacity restrictions (3.1) will be reflected in the first n rows of the
matrix M ∈ R(2n)×(n2+n), hence, M must fulfill for 1 ≤ j ≤ n

(M · x)j =
n2+n∑
v=1

Mjvxv︸ ︷︷ ︸
(∗)

=
n∑
i=1

αijai −Aβj =
n∑
i=1

xn(i−1)+jai −Axn2+j︸ ︷︷ ︸
(∗∗)

.

We compare the coefficients Mjv of xv in (∗) with those in the last expression (∗∗):

• If v = n(i − 1) + j for some 1 ≤ i ≤ n then the coefficient is Mjv = ai. Note, that the
condition is equivalent to v mod n = j mod n.

• If v = n2 + j then the coefficient is Mjv = −A.

• For all other coefficients we have Mjv = 0, in other words

1 ≤ j ≤ n⇒Mjv :=

a v−j

n
+1 (v mod n = j mod n) ∧ v ≤ n2

−A v = n2 + j

0 otherwise.

Similarly, the restrictions (3.2) will be reflected in the rows n+ 1 to 2n of M , hence, M must
fulfill for 1 ≤ i ≤ n

(M · x)n+i =
n2+n∑
v=1

Mn+i,vxv︸ ︷︷ ︸
(∗)

=
n∑
j=1

αij =
n∑
j=1

xn(i−1)+j︸ ︷︷ ︸
(∗∗)

.

We compare the coefficients Mn+i,v of xv in (∗) with those in the last expression (∗∗):

26

• If n(i− 1) + 1 ≤ v ≤ ni then the coefficient is Mn+i,v = 1.

• For all other coefficients we have Mn+i,v = 0, in other words (with i = j − n)

j > n⇒Mjv :=

{
1 n(j − n− 1) + 1 ≤ v ≤ n(j − n)

0 otherwise.

The right-hand side b is a vector b ∈ R2n with bj :=

{
0 1 ≤ j ≤ n
1 otherwise.

The restrictions (M · x)j ≡ bj: ≡ :=

{
≤ 1 ≤ j ≤ n
= otherwise.

The objective function is represented through the vector c ∈ Rn2+n, which must fulfill

c · x =

n2+n∑
v=1

cvxv︸ ︷︷ ︸
(∗)

=

n∑
j=1

βj =

n∑
j=1

xn2+j︸ ︷︷ ︸
(∗∗)

.

We compare the coefficients of xv in (∗) with those in the last expression (∗∗):

• If 1 ≤ v ≤ n2 then the coefficient is cv = 0.

• For all other coefficients we have cv = 1, in other words

cv :=

{
0 1 ≤ v ≤ n2

1 otherwise.

We write BPLPP(a,A) for this problem.
It is easy to reconstruct a solution (k, p) of BPOP(a,A) from a solution (α, β) of BPLPP(a,A).

For this, let k :=
∑n

j=1 βj and let π : N1,n → N1,n be a permutation of N1,n such that

∀
1≤j≤k

βπ(j) = 1 ∧ ∀
k<j≤n

βπ(j) = 0. (3.4)

π permutes the bins in such a way that the first k bins βπ(1), . . . , βπ(k) will be occupied and
the remaining n− k bins βπ(k+1), . . . , βπ(n) are empty. From (3.2) it follows immediately that
for every 1 ≤ i ≤ n there is a unique 1 ≤ j ≤ n with αij = 1, thus the function

p : N1,n → N1,k, i 7→ the unique j with αiπ(j) = 1

is well-defined, since π just permutes the columns of (αij) in such a way that zero-columns
are moved to the end. In order to see that (k, p) is feasible, we take 1 ≤ j ≤ k arbitrary but
fixed and now ∑

i
p(i)=j

ai =
∑
i

αiπ(j)=1

ai =

n∑
i=1

αiπ(j)ai
(3.1)
≤ Aβπ(j)

(3.4)
= A.

The minimality of k follows easily from the definition of k together with (3.3).

27

EXAMPLE 3.4

Consider 7 articles with weights

a1 = 0.2 a2 = 0.5 a3 = 0.4 a4 = 0.7 a5 = 0.1 a6 = 0.3 a7 = 0.8

and bins with maximum capacity of 1. The formulation as a linear programming problem
now assumes at most n = 7 bins and introduces 49 variables α11, . . . , α77 plus 7 variables
β1, . . . , β7, hence, a total of 56 variables. We have 7 capacity restrictions (3.1)

0.2α1j + 0.5α2j + 0.4α3j + 0.7α4j + 0.1α5j + 0.3α6j + 0.8α7j ≤ βj for 1 ≤ j ≤ 7

and 7 unicity restrictions (3.2)

αi1 + αi2 + αi3 + αi4 + αi5 + αi6 + αi7 = 1 for 1 ≤ i ≤ 7,

which results in a solution

(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0),

which translates into k = 3 and a mapping p for the articles

p(1) = 1 p(2) = 2 p(3) = 2 p(4) = 3 p(5) = 2 p(6) = 3 p(7) = 1.

3.2.2 Heuristic Approximation Algorithms for the Bin Packing Problem

For big instances of bin packing problems the integer linear programming problem can be
computationally very expensive. Therefore, approximation algorithms based on heuristics
are very popular for solving huge bin packing problems.

In the following, we write P for a problem and P (x) for an instance of problem P with
input x. If A is an algorithm, then A(x) denotes the result of algorithm A applied to input x.

DEFINITION 3.5: APPROXIMATION ALGORITHM

Let P be an optimization problem and P̄ the relaxed problem ignoring optimality. We
call A an approximation algorithm for problem P if and only if every y = A(x) is still a
solution of P̄ (x) but not necessarily a solution of P (x).

DEFINITION 3.6: APPROXIMATION QUALITY

Let P be an optimization problem and y(x) a solution for P (x). Let furthermore k ≥ 1.
We call A a k-approximation algorithm for problem P if and only if for all admissible
inputs x of P

A(x)

{
≤ ky(x) if P is a minimization problem
≥ 1

ky(x) if P is a maximization problem

28

THEOREM 3.7

If P 6= NP a, then there is no k-approximation algorithm for the optimal bin packing
problem with k < 3

2 .

awe do not go into details

Data: Positive numbers a1, . . . , an, A.
Result: k, p such that (k, p) is a solution for the bin packing problem

k = 0
sort a into decreasing order
for j = 1, . . . , n do

cj = A
end
for i = 1, . . . , n do

m = 0
for j = 1, . . . , k do

if ai ≤ cj then
m = j
p(i) = j
cj = cj − ai

end
end
if m = 0 then

k = k + 1
p(i) = k
ck = ck − ai

end
end

Algorithm 2: First Fit Decreasing Heuristic (FFD)

THEOREM 3.8

FFD is a 3
2 -approximation algorithm for the optimal bin packing problem.

THEOREM 3.9

For all instances x of the bin packing problem with solution y(x) we have

FFD(x) ≤ 11

9
y(x) +

2

3
.

EXAMPLE 3.10

Consider again 7 articles with weights

a1 = 0.2 a2 = 0.5 a3 = 0.4 a4 = 0.7 a5 = 0.1 a6 = 0.3 a7 = 0.8

29

and bins with maximum capacity of 1. Running the FFD-algorithm on this instance of
the bin packing problem gives the same solution as shown in Example 3.4.

30

