Johannes Kepler University Linz (JKU)
Research Institute for Symbolic Computation (RISC)

Lecture Notes

Formal Modelling

Wolfgang Windsteiger

Contents

1 Modelling in Geometry 1
1.1 An Introductory Example 1
1.2 Modelling Geometry in Algebra 2
1.2.1 First Approach 2
1.2.2 Improved Approach 3
1.2.3 The General Model 3
1.2.4 Deciding Solvability of a System of Polynomial Equations 5
1.2.5 Describing Frequently Used Geometrical Properties by Polynomials 6
1.3 A Generalization Beyond Geometry 8
2 Modelling in Graph Theory 11
2.1 An Introductory Example 11
2.2 Graph Theory 12
2.3 Modelling the Shortest-Connection-Problem 16
2.4 An Algorithm for Solving the Shortest Path Problem 17
2.5 A Real-World Problem 20
3 Modelling in Combinatorial Optimization 24
3.1 An Introductory Example 24
3.2 Modelling the Packing Problem 24
3.2.1 Bin Packing as a Linear Programming Problem 25
3.2.2 Heuristic Approximation Algorithms for the Bin Packing Problem 28

Introduction

These lecture notes cover examples of formal modelling in three areas:

1. geometry,
2. graph theory, and
3. combinatorial optimization.

By formal modelling we mean in this context the exact formal specification of problems, where the domains over which the problems are formulated are discrete or symbolic, in any case non-continuous.

In the area of geometry, we will describe a method, how geometrical prove problems can be formulated in such a way that they can be transformed into systems of algebraic equations, and the solvability of these systems then corresponds to the truth of the original statement. In this case, the domain is symbolic because we work on logical formulas expressing geometrical configurations.

In the area of graph theory, we introduce the basic concepts of graph theory and formulate one famous problem in graph theory, namely the shortest path problem. We present Dijkstra's algorithm for computing shortest paths in graphs with non-negative weights and prove why it always finds a shortest path. In this case, the domain is discrete because we work with graphs with finitely many vertices, edges, and paths.

In the area of combinatorial optimization we discuss the bin packing problem and outline different flavours of the problem: the plain version of the problem, i.e. finding a number of bins into which the objects can be packed, the decision problem derived from it, i.e. deciding whether the objects can be packed into a given number of bins, and the optimization problem derived from it, finding the minimal number of bins into which the objects can be packed. We compare an exact solultion algorithm based in integer linear programming with a heuristic approximation algorithm. In this case, the domain is discrete because we work with finitely objects being packed into finitely many bins.

Bibliography

[1] B. Korte, J. Vygen. Kombinatorische Optimierung, Theorie und Algorithmen. Springer Spektrum, 3. Auflage, ISBN 978-3-662-57690-8, https://doi.org/10.1007/978, 2018.
[2] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Volume A, Chapters 1-38, Springer Berlin Heidelberg New York, ISBN 978-3-540-44389-6, 2003.

Modelling in Geometry

In this chapter we present an example of an algebraic modeling of logical statements derived from geometrical problems. More precisely, we show how geometrical problems can be translated to systems of polynomial equations, and how the truth or falsity of the original statement corresponds to solvability of the resulting system of equations. Finally, we present an algorithm that can decide the solvability of systems of algebraic equations.

1.1 An Introductory Example

Consider the very simple geometrical configuration illustrated in Figure 1.1:

- Given two points A and C and the line passing through A and C.
- Given a point B such that the line $A B$ is perpendicular to the line $A C$.
- Given a point D such that the line $C D$ is perpendicular to the line $A C$.

Then

- the lines $A B$ and $C D$ must be parallel.

Figure 1.1: Parallel lines
The logical statement describing the geometric situation is

$$
\begin{equation*}
\underset{A, B, C, D}{\forall}((\operatorname{perpendicular}(A, B, A, C) \wedge \operatorname{perpendicular}(C, A, C, D)) \Rightarrow \operatorname{parallel}(A, B, C, D)) \tag{1.1}
\end{equation*}
$$

with appropriate predicates 'perpendicular' and 'parallel'.

1.2 Modelling Geometry in Algebra

The first step in modelling geometry is to introduce a coordinate system. Using coordinates we will then be able to describe properties such as 'perpendicular' and 'parallel' by polynomial equalities and negated equalities. Continuing the example from above, let

$$
A=(0,0) \quad B=\left(b_{1}, b_{2}\right) \quad C=\left(c_{1}, c_{2}\right) \quad D=\left(d_{1}, d_{2}\right)
$$

1.2.1 First Approach

Using the coordinates as described above,

$$
\begin{align*}
& \operatorname{perpendicular}(A, B, A, C) \text { means }\binom{b_{1}}{b_{2}} \cdot\binom{c 1}{c_{2}}=b_{1} c_{1}+b_{2} c_{2}=0 \tag{1.2}\\
& \text { perpendicular }(C, A, C, D) \text { means }\binom{c_{1}}{c_{2}} \cdot\binom{d_{1}-c_{1}}{d_{2}-c_{2}}=c_{1}\left(d_{1}-c_{1}\right)+c_{2}\left(d_{2}-c_{2}\right)=0 \tag{1.3}\\
& \operatorname{parallel}(A, B, C, D) \text { means } \quad\binom{b_{2}}{-b_{1}} \cdot\binom{d_{1}-c_{1}}{d_{2}-c_{2}}=b_{2}\left(d_{1}-c_{1}\right)-b_{1}\left(d_{2}-c_{2}\right)=0 \tag{1.4}
\end{align*}
$$

For short we write the equalities in (1.2), (1.3), and (1.4) as $p_{1}=0, p_{2}=0$, and $p_{3}=0$, respectively. Essentially, formula (1.1) is now

$$
\underset{b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}}{\forall}\left(p_{1}=0 \wedge p_{2}=0 \Rightarrow p_{3}=0\right),
$$

which is by de'Morgan's rule equivalent to

$$
\begin{equation*}
\neg_{b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}}^{\exists} p_{1}=0 \wedge p_{2}=0 \wedge p_{3} \neq 0 . \tag{1.5}
\end{equation*}
$$

Now the trick: the inequality $p_{3} \neq 0$ is equivalent to $\underset{\alpha_{0}}{\exists} \alpha_{0} p_{3}-1=0$, hence, (1.5) is equivalent to

$$
\begin{equation*}
\neg_{b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}}^{\exists} p_{1}=0 \wedge p_{2}=0 \wedge \underset{\alpha_{0}}{\exists} \alpha_{0} p_{3}-1=0, \tag{1.6}
\end{equation*}
$$

and, under the assumption that α_{0} is a variable different from all previously used variables, we finally arrive at

$$
\begin{equation*}
\neg_{b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}, \alpha_{0}}^{\exists} p_{1}=0 \wedge p_{2}=0 \wedge \alpha_{0} p_{3}-1=0 . \tag{1.7}
\end{equation*}
$$

It is easy to see, that (1.7) just expresses that there is no solution for the system of equations

$$
\begin{equation*}
p_{1}=0 \quad p_{2}=0 \quad \alpha_{0} p_{3}-1=0 \tag{1.8}
\end{equation*}
$$

substituting back the original expressions for p_{1}, p_{2}, and p_{3} we have a system of polynomial (algebraic) equations

$$
\begin{aligned}
b_{1} c_{1}+b_{2} c_{2} & =0 \\
c_{1} d_{1}-c_{1}^{2}+c_{2} d_{2}-c_{2}^{2} & =0 \\
\alpha_{0} b_{2} d_{1}-\alpha_{0} b_{2} c_{1}-\alpha_{0} b_{1} d_{2}+\alpha_{0} b_{1} c_{2}-1 & =0 .
\end{aligned}
$$

Solving this system (e.g. with Mathematica) gives us solutions, e.g.

$$
\begin{equation*}
c_{1}=0 \quad c_{2}=0 \quad b_{1}=0 \quad b_{2}=1 \quad d_{1}=1 \quad d_{2}=0 \quad \alpha_{0}=1, \tag{1.9}
\end{equation*}
$$

which means that this does not constitute a proof of the original statement (1.1). In fact, the statement is not true, because the solution of the system of equations gives a counterexample. If we take $A=C, B=(0,1)$, and $D=(1,0)$, then the 'line passing through A and C ' degenerates to a point such that the hypotheses 'perpendicular (A, B, A, C) ' and 'perpendicular (C, A, C, D) ' trivially become true whereas the conclusion 'parallel (A, B, C, D) ' is false because $A B$ and $C D$ are perpendicular (and not parallel).

1.2.2 Improved Approach

Obviously, something must have gone wrong in the previous section, because the statement under investigation is true. The system of equations derived in the previous section, whose solvability should be equivalent to the statement that we want to prove, however, was an inaccurate model, because it allowed the 'wrong solution' (1.9). Note, however, that clearly C should be different from A when we talk about 'the line passing through A and C^{\prime}, but our model did not contain any hypothesis expressing $C \neq A$. Strictly speaking, (1.9) is of course a correct solution of the system of equations (check by substitution!), but the equations are a wrong model for the original proof problem.

Using coordinates $C \neq A$ means $c_{1} \neq 0 \vee c_{2} \neq 0$. Applying the trick like in (1.6) again, this is equivalent to

$$
\underset{\alpha_{1}}{\exists} \alpha_{1} c_{1}-1=0 \vee \underset{\alpha_{2}}{\exists} \alpha_{2} c_{2}-1=0
$$

which is equivalent to

$$
\underset{\alpha_{1}, \alpha_{2}}{\exists} q_{1}=0 \quad \text { with } \quad q_{1}=\left(\alpha_{1} c_{1}-1\right)\left(\alpha_{2} c_{2}-1\right) .
$$

In other words, (1.1) is equivalent to the unsolvability of

$$
\begin{aligned}
b_{1} c_{1}+b_{2} c_{2} & =0 \\
c_{1} d_{1}-c_{1}^{2}+c_{2} d_{2}-c_{2}^{2} & =0 \\
\left(\alpha_{1} c_{1}-1\right)\left(\alpha_{2} c_{2}-1\right) & =0 \\
\alpha_{0} b_{2} d_{1}-\alpha_{0} b_{2} c_{1}-\alpha_{0} b_{1} d_{2}+\alpha_{0} b_{1} c_{2}-1 & =0
\end{aligned}
$$

If we pass this system of equations to Mathematica, it will in fact tell us that there is no solution, so the original statement (1.1) is proved.

1.2.3 The General Model

Let us assume we have a geometrical configuration described by

$$
p_{1}=0 \quad \ldots \quad p_{n}=0 \quad q_{1} \neq 0 \quad \ldots \quad q_{m} \neq 0
$$

and a conclusion described by

$$
c=0
$$

where $p_{i}, q_{j}, c \in \mathbb{Q}\left[x_{1}, \ldots, x_{l}\right]$ for $1 \leq i \leq n$ and $1 \leq j \leq m$. Then

$$
\underset{x_{1}, \ldots, x_{l}}{\forall}\left(p_{1}=0 \wedge \ldots \wedge p_{n}=0 \wedge q_{1} \neq 0 \wedge \ldots \wedge q_{m} \neq 0 \Rightarrow c=0\right)
$$

is equivalent to

$$
\neg_{x_{1}, \ldots, x_{l}}^{\exists} \neg\left(p_{1}=0 \wedge \ldots \wedge p_{n}=0 \wedge q_{1} \neq 0 \wedge \ldots \wedge q_{m} \neq 0 \Rightarrow c=0\right),
$$

which is in turn equivalent to

$$
\neg_{x_{1}, \ldots, x_{l}}^{\exists} p_{1}=0 \wedge \ldots \wedge p_{n}=0 \wedge q_{1} \neq 0 \wedge \ldots \wedge q_{m} \neq 0 \wedge c \neq 0 .
$$

The negated equalities can then be turned into equalities by the so-called Rabinovich-Trick

$$
\neg \underset{x_{1}, \ldots, x_{l}}{\exists} p_{1}=0 \wedge \ldots \wedge p_{n}=0 \wedge \underset{\alpha_{1}}{\exists} \alpha_{1} q_{1}-1=0 \wedge \ldots \wedge \underset{\alpha_{m}}{\exists} \alpha_{m} q_{m}-1=0 \wedge \underset{\alpha_{0}}{\exists} \alpha_{0} c-1=0,
$$

and since we assume that $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}$ are new variables distinct from x_{1}, \ldots, x_{n} this is equivalent to

$$
\neg_{x_{1}, \ldots, x_{l}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}}^{\exists} p_{1}=0 \wedge \ldots \wedge p_{n}=0 \wedge \alpha_{1} q_{1}-1=0 \wedge \ldots \wedge \alpha_{m} q_{m}-1=0 \wedge \alpha_{0} c-1=0 .
$$

This is nothing else than saying that the system of polynomial equations in the variables $x_{1}, \ldots, x_{l}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}$

$$
\begin{gathered}
p_{1}=0 \\
\vdots \\
p_{n}=0 \\
\alpha_{1} q_{1}-1=0 \\
\vdots \\
\alpha_{m} q_{m}-1=0 \\
\alpha_{0} c-1=0
\end{gathered}
$$

has no solutions for $x_{1}, \ldots, x_{l}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}$.

Example 1.1: Theorem of Thales

Let A and B be two points and M the midpoint between A and B. Let c be the circle with center M through A and B, and let C be any point on c. Then $A C$ and $B C$ are perpendicular.

We introduce coordinates and fix $M=(0,0)$. We have $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right)$, and $C=\left(c_{1}, c_{2}\right)$. Since M is the midpoint between A and B, we have

$$
a_{1}+b_{1}=0 \quad a_{2}+b_{2}=0
$$

and since C and A are on a circle, their distance to the center M must be equal, i.e.

$$
a_{1}^{2}+a_{2}^{2}-c_{1}^{2}-c_{2}^{2}=0
$$

$A C$ and $B C$ are perpendicular can be formulated as

$$
\left(c_{1}-a_{1}\right)\left(c_{1}-b_{1}\right)+\left(c_{2}-a_{2}\right)\left(c_{2}-b_{2}\right)=0 .
$$

Using the model from above with $n=3, m=0$, and $l=6$ we have the following system of equations in the variables $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$:

$$
\begin{aligned}
a_{1}^{2}+a_{2}^{2}-c_{1}^{2}-c_{2}^{2} & =0 \\
a_{1}+b_{1} & =0 \\
a_{2}+b_{2} & =0 \\
\alpha_{0}\left(\left(c_{1}-a_{1}\right)\left(c_{1}-b_{1}\right)+\left(c_{2}-a_{2}\right)\left(c_{2}-b_{2}\right)\right)-1 & =0
\end{aligned}
$$

In this example it is easy to convince oneself that this system has no solution, because equations 2 and 3 mean

$$
a_{1}=-b_{1} \quad a_{2}=-b_{2},
$$

and substituting in equation 4 yields

$$
\begin{equation*}
\alpha_{0}\left(c_{1}^{2}-a_{1}^{2}+c_{2}^{2}-a_{2}^{2}\right)-1=0 . \tag{1.10}
\end{equation*}
$$

From equation 1 we get $a_{1}^{2}+a_{2}^{2}=c_{1}^{2}+c_{2}^{2}$, which turns (1.10) into

$$
\alpha_{0} \cdot 0-1=0, \quad \text { i.e. } \quad-1=0,
$$

hence, the above system of polynomial equations has no solutions.

1.2.4 Deciding Solvability of a System of Polynomial Equations

In general, it is not as easy as in Example 1.1 to decide, whether a system of polynomial equations has a solution or not. The theory of Gröbner bases plays a key role in this field, but we will not go into much detail.

Given a set of polynomials G in x_{1}, \ldots, x_{n}, a Gröbner basis of G is a set of polynomials B, such that

$$
\underset{x_{1}, \ldots, x_{n}}{\forall}\left(\underset{g \in G}{\forall} g\left(x_{1}, \ldots, x_{n}\right)=0 \Leftrightarrow \underset{b \in B}{\forall} b\left(x_{1}, \ldots, x_{n}\right)=0\right),
$$

i.e. the zero set of G equals the zero set of B, and B has some special properties that make the system $\underset{b \in B}{\forall} b=0$ 'easier to solve' than the original system $\underset{g \in G}{\forall} g=0$. In many respects, a Gröbner basis of G is the polynomial analogy to the triangular form of a matrix representing a system of linear equations. Fortunately ${ }^{1}$, there is an algorithm that computes a Gröbner basis for any given set of polynomials G. Similar to Gaussian elimination, the Gröbner basis algorithm subsequently eliminates variables by a process called polynomial reduction, which is a generalization of the univariate polynomial division to multivariate polynomials. Every

[^0]computer algebra system (like Mathematica, Maple, or Sage) offers a command to compute Gröbner bases, in Mathematica this command is called GroebnerBasis.

THEOREM 1.2

A system of polynomial equations

$$
g_{1}=0, \quad \ldots \quad, g_{n}=0
$$

has no solutions over \mathbb{C} if and only if the Gröbner basis of $\left\{g_{1}, \ldots, g_{n}\right\}$ contains a constant polynomial unequal to 0 .

Example 1.3: Thales with Gröbner Basis

Using Mathematica, we compute

$$
\begin{aligned}
& \text { GroebnerBasis }\left[\left\{a_{1}^{2}+a_{2}^{2}-c_{1}^{2}-c_{2}^{2}, a_{1}+b_{1}, a_{2}+b_{2},\right.\right. \\
& \\
& \left.\left.\quad \alpha_{0}\left(\left(c_{1}-a_{1}\right)\left(c_{1}-b_{1}\right)+\left(c_{2}-a_{2}\right)\left(c_{2}-b_{2}\right)\right)-1\right\},\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, \alpha_{0}\right\}\right]
\end{aligned}
$$

and the answer is $\{1\}$, thus, the Gröbner basis contains the constant polynomial 1 and the system of equations corresponding to the Theorem of Thales is unsolvable, therefore the theorem is proven.

1.2.5 Describing Frequently Used Geometrical Properties by Polynomials

In this section we assume some coordinate system. We will collect some polynomial equations describing frequently used properties in geometry.

Theorem 1.4

Let

$$
X_{1}=\binom{x_{1}}{y_{1}} \quad X_{2}=\binom{x_{2}}{y_{2}} \quad X_{3}=\binom{x_{3}}{y_{3}} \quad X_{4}=\binom{x_{4}}{y_{4}} .
$$

1. X_{1}, X_{2}, and X_{3} are collinear if and only if

$$
\operatorname{det}\left(\left(\begin{array}{ccc}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right)\right)=0
$$

2. X_{1}, X_{2}, X_{3}, and X_{4} are collinear if and only if

$$
\operatorname{det}\left(\left(\begin{array}{cccc}
1 & x_{1} & y_{1} & x_{1}^{2}+y_{1}^{2} \\
1 & x_{2} & y_{2} & x_{2}^{2}+y_{2}^{2} \\
1 & x_{3} & y_{3} & x_{3}^{2}+y_{3}^{2} \\
1 & x_{4} & y_{4} & x_{4}^{2}+y_{4}^{2}
\end{array}\right)\right)=0 .
$$

3. $X_{1} X_{2}$ and $X_{3} X_{4}$ are perpendicular if and only if

$$
\left(x_{2}-x_{1}\right)\left(x_{4}-x_{3}\right)+\left(y_{2}-y_{1}\right)\left(y_{4}-y_{3}\right)=0 .
$$

4. $X_{1} X_{2}$ and $X_{3} X_{4}$ are parallel if and only if

$$
\left(y_{2}-y_{1}\right)\left(x_{4}-x_{3}\right)-\left(x_{2}-x_{1}\right)\left(y_{4}-y_{3}\right)=0 .
$$

Example 1.5: Theorem of Pappus

Given one set of collinear points R, S, and T, and another set of collinear points U, V, and W, s.t. R, S, and U and R, S, and V, respectively, are not collinear. Then the intersection points X, Y, and Z of line pairs $R V$ and $S U, R W$ and $T U, S W$ and $T V$ are collinear, see Figure 1.2. We introduce coordinates:

$$
\begin{array}{llr}
R=\binom{r_{1}}{r_{2}} & S=\binom{s_{1}}{s_{2}} & T=\binom{t_{1}}{t_{2}} \\
U=\binom{u_{1}}{u_{2}} & V=\binom{v_{1}}{v_{2}} & W=\binom{w_{1}}{w_{2}} \\
X=\binom{x_{1}}{x_{2}} & Y=\binom{y_{1}}{y_{2}} & Z=\binom{z_{1}}{z_{2}} .
\end{array}
$$

That point X is the intersection of $R V$ and $S U$ means that both R, V, and X as well as S, U, and X are collinear, and by Theorem 1.4 this can be described by

$$
\begin{aligned}
& \operatorname{det}\left(\left(\begin{array}{ccc}
1 & r_{1} & r_{2} \\
1 & v_{1} & v_{2} \\
1 & x_{1} & x_{2}
\end{array}\right)\right)=-r_{2} v_{1}+r_{1} v_{2}+r_{2} x_{1}-r_{1} x_{2}-v_{2} x_{1}+v_{1} x_{2}=0 \\
& \operatorname{det}\left(\left(\begin{array}{lll}
1 & s_{1} & s_{2} \\
1 & u_{1} & u_{2} \\
1 & x_{1} & x_{2}
\end{array}\right)\right)=-s_{2} u_{1}+s_{1} u_{2}+s_{2} x_{1}-s_{1} x_{2}+u_{1} x_{2}-u_{2} x_{1}=0
\end{aligned}
$$

Applying the same technique for the remaining hypotheses and the conclusion of the theorem we arrive at a model with $n=8, m=2$, and $l=18$

$$
\begin{aligned}
-r_{2} v_{1}+r_{1} v_{2}+r_{2} x_{1}-r_{1} x_{2}+v_{1} x_{2}-v_{2} x_{1} & =0 \\
-s_{2} u_{1}+s_{1} u_{2}+s_{2} x_{1}-s_{1} x_{2}+u_{1} x_{2}-u_{2} x_{1} & =0 \\
-r_{2} w_{1}+r_{1} w_{2}+r_{2} y_{1}-r_{1} y_{2}+w_{1} y_{2}-w_{2} y_{1} & =0 \\
-t_{2} u_{1}+t_{1} u_{2}+t_{2} y_{1}-t_{1} y_{2}+u_{1} y_{2}-u_{2} y_{1} & =0 \\
-s_{2} w_{1}+s_{1} w_{2}+s_{2} z_{1}-s_{1} z_{2}+w_{1} z_{2}-w_{2} z_{1} & =0 \\
-t_{2} v_{1}+t_{1} v_{2}+t_{2} z_{1}-t_{1} z_{2}+v_{1} z_{2}-v_{2} z_{1} & =0 \\
-r_{2} s_{1}+r_{1} s_{2}+r_{2} t_{1}-r_{1} t_{2}+s_{1} t_{2}-s_{2} t_{1} & =0 \\
-u_{2} v_{1}+u_{1} v_{2}+u_{2} w_{1}-u_{1} w_{2}+v_{1} w_{2}-v_{2} w_{1} & =0 \\
\alpha_{1}\left(-r_{2} s_{1}+r_{1} s_{2}+r_{2} u_{1}-r_{1} u_{2}+s_{1} u_{2}-s_{2} u_{1}\right)-1 & =0 \\
\alpha_{2}\left(-r_{2} s_{1}+r_{1} s_{2}+r_{2} v_{1}-r_{1} v_{2}+s_{1} v_{2}-s_{2} v_{1}\right)-1 & =0 \\
\alpha_{0}\left(-x_{2} y_{1}+x_{1} y_{2}+x_{2} z_{1}-x_{1} z_{2}+y_{1} z_{2}-y_{2} z_{1}\right)-1 & =0
\end{aligned}
$$

The Gröbner basis of the set of left-hand sides of these equations is in fact $\{1\}$, hence, the Theorem of Pappus is proved.

Figure 1.2: Theorem of Pappus

1.3 A Generalization Beyond Geometry

Statements derived from geometrical theorems usually have the form of universally quantified implications. We will now see that not only these can be translated into systems of polynomial equations. The same technique as shown in the previous section can be applied to arbitrary universally quantified boolean combinations of polynomial equalities ${ }^{2}$. We want to prove

$$
\begin{equation*}
\underset{x_{1}, \ldots, x_{l}}{\forall} \Phi, \tag{1.11}
\end{equation*}
$$

where Φ is a boolean combination of polynomial equations with polynomials in $\mathbb{Q}\left[x_{1}, \ldots, x_{l}\right]$. First we rewrite the statement as

$$
\neg \underset{x_{1}, \ldots, x_{l}}{\exists} \neg \Phi,
$$

and then we convert $\neg \Phi$ into conjunctive normal form, thus, (1.11) can be written as

$$
\begin{equation*}
\neg \underset{x_{1}, \ldots, x_{l}}{\exists}\left(\Phi_{1,1} \vee \ldots \vee \Phi_{1, j_{1}}\right) \wedge \ldots \wedge\left(\Phi_{n, 1} \vee \ldots \vee \Phi_{n, j_{n}}\right), \tag{1.12}
\end{equation*}
$$

where each $\Phi_{i, j}$ has the form either $P_{i, j}=0$ or $\neg\left(P_{i, j}=0\right)$. Now we introduce new polynomials

$$
Q_{i, j}:= \begin{cases}P_{i, j} & \text { if } \Phi_{i, j} \text { has the form } P_{i, j}=0 \\ \alpha_{i, j} P_{i, j}-1 & \text { if } \Phi_{i, j} \text { has the form } \neg\left(P_{i, j}=0\right)\end{cases}
$$

with new variables $\alpha_{i, j}$. Note that the $\alpha_{i, j}$ can be thought of as existentially quantified in $Q_{i, j}=0$, compare to the Rabinovich-Trick explained in the previous section. Since the $\alpha_{i, j}$

[^1]are all new and distinct from x_{1}, \ldots, x_{l} the existential quantifiers can be pushed outside such that (1.12) can be written as
$$
\neg \underset{x_{1}, \ldots, x_{l},\left\{\alpha_{i, j}\right\}}{\exists}\left(Q_{1,1}=0 \vee \ldots \vee Q_{1, j_{1}}=0\right) \wedge \ldots \wedge\left(Q_{n, 1}=0 \vee \ldots \vee Q_{n, j_{n}}=0\right) .
$$

The $\left\{\alpha_{i, j}\right\}$ in the existential quantifier should indicate that we quantify over all $\alpha_{i, j}$ that occur in the $Q_{i, j}$. Now remember that a product is zero if and only if one of the factors is zero ${ }^{3}$, in other words

$$
Q_{i, 1}=0 \vee \ldots \vee Q_{i, j_{i}}=0 \quad \text { if and only if } \quad Q_{i, 1} \cdot \ldots \cdot Q_{i, j_{i}}=0
$$

thus, finally

$$
\neg \underset{x_{1}, \ldots, x_{l},\left\{\alpha_{i, j}\right\}}{\exists}\left(Q_{1,1} \cdot \ldots \cdot Q_{1, j_{1}}=0\right) \wedge \ldots \wedge\left(Q_{n, 1} \cdot \ldots \cdot Q_{n, j_{n}}=0\right) .
$$

Hence, the original statement (1.11) is equivalent to the unsolvability of the system of polynomial equations

$$
\begin{array}{ccc}
Q_{1,1} \cdot \ldots \cdot Q_{1, j_{1}} & = & 0 \\
\vdots & \vdots & \vdots \\
Q_{n, 1} \cdot \ldots \cdot Q_{n, j_{n}} & = & 0,
\end{array}
$$

which can be decided by computing

$$
B=\operatorname{GroebnerBasis}\left[\left\{Q_{1,1} \cdot \ldots \cdot Q_{1, j_{1}}, \ldots, Q_{n, 1} \cdot \ldots \cdot Q_{n, j_{n}}\right\}\right]
$$

and checking, whether B contains a constant polynomial unequal to 0 .
EXAMPLE 1.6
We come back to our introductory example (1.1). It is easy to see that this statement can be generalized: if we have two perpendicular lines, then being parallel to one of them is obviously the same as being perpendicular to the other. To make a theorem out of that we need two side-conditions, which guarantee that the given lines will not degenerate to points, in other words,

$$
\begin{aligned}
& \underset{A, B, C, D}{\forall} A \neq C \wedge A \neq B \wedge \operatorname{perpendicular}(A, B, A, C) \Rightarrow \\
& \quad \operatorname{perpendicular}(C, A, C, D) \Leftrightarrow \operatorname{parallel}(A, B, C, D)
\end{aligned}
$$

After introducing coordinates

$$
A=(0,0) \quad B=\left(b_{1}, b_{2}\right) \quad C=\left(c_{1}, c_{2}\right) \quad D=\left(d_{1}, d_{2}\right)
$$

[^2]the conjunctive normal form of the negated expression inside the quantifier gives
$$
\left(b_{1} \neq 0 \vee b_{2} \neq 0\right) \wedge\left(c_{1} \neq 0 \vee c_{2} \neq 0\right) \wedge
$$
$\wedge(\neg \operatorname{parallel}(A, B, C, D) \vee \neg$ perpendicular $(C, A, C, D)) \wedge$
$\wedge(\operatorname{parallel}(A, B, C, D) \vee$ perpendicular $(C, A, C, D)) \wedge$
\wedge perpendicular (A, B, A, C)
Using Theorem 1.4 we get the following combination of equations an inequations
\[

$$
\begin{gathered}
\left(b_{1} \neq 0 \vee b_{2} \neq 0\right) \wedge\left(c_{1} \neq 0 \vee c_{2} \neq 0\right) \wedge \\
\wedge\left(b_{2}\left(d_{1}-c_{1}\right)-b_{1}\left(d_{2}-c_{2}\right) \neq 0 \vee-c_{1}\left(d_{1}-c_{1}\right)-c_{2}\left(d_{2}-c_{2}\right) \neq 0\right) \wedge \\
\wedge\left(b_{2}\left(d_{1}-c_{1}\right)-b_{1}\left(d_{2}-c_{2}\right)=0 \vee-c_{1}\left(d_{1}-c_{1}\right)-c_{2}\left(d_{2}-c_{2}\right)=0\right) \wedge \\
\wedge b_{1} c_{1}+b_{2} c_{2}=0 .
\end{gathered}
$$
\]

Applying the Rabinovich-Trick and combining disjunctions to products results in the following set of polynomials

$$
\begin{gathered}
\left\{-\alpha_{0} b_{1}+\alpha_{1} \alpha_{0} b_{1} b_{2}-\alpha_{1} b_{2}+1,-\alpha_{2} c_{1}+\alpha_{3} \alpha_{2} c_{1} c_{2}-\alpha_{3} c_{2}+1,\right. \\
-\alpha_{4} \alpha_{5} b_{2} c_{1}^{3}+\alpha_{4} \alpha_{5} b_{1} c_{2} c_{1}^{2}+\alpha_{4} b_{2} c_{1}-\alpha_{4} \alpha_{5} b_{2} c_{2}^{2} c_{1}-\alpha_{4} b_{1} c_{2}+\alpha_{4} \alpha_{5} b_{1} c_{2}^{3}+ \\
2 \alpha_{4} \alpha_{5} b_{2} c_{1}^{2} d_{1}-\alpha_{4} \alpha_{5} b_{1} c_{1}^{2} d_{2}-\alpha_{4} \alpha_{5} b_{2} c_{1} d_{1}^{2}-\alpha_{4} \alpha_{5} b_{1} c_{2} c_{1} d_{1}+\alpha_{4} \alpha_{5} b_{2} c_{2} c_{1} d_{2}+ \\
\alpha_{4} \alpha_{5} b_{1} c_{1} d_{1} d_{2}+\alpha_{4} \alpha_{5} b_{1} c_{2} d_{2}^{2}+\alpha_{4} \alpha_{5} b_{2} c_{2}^{2} d_{1}-2 \alpha_{4} \alpha_{5} b_{1} c_{2}^{2} d_{2}-\alpha_{4} \alpha_{5} b_{2} c_{2} d_{1} d_{2}-\alpha_{4} b_{2} d_{1}+ \\
\alpha_{4} b_{1} d_{2}-\alpha_{5} c_{1}^{2}-\alpha_{5} c_{2}^{2}+\alpha_{5} c_{1} d_{1}+\alpha_{5} c_{2} d_{2}+1, \\
2 b_{2} c_{1}^{2} d_{1}-b_{1} c_{1}^{2} d_{2}-b_{2} c_{1} d_{1}^{2}-b_{1} c_{2} c_{1} d_{1}+b_{2} c_{2} c_{1} d_{2}+b_{1} c_{1} d_{1} d_{2}+b_{1} c_{2} d_{2}^{2}+b_{2} c_{2}^{2} d_{1} \\
2 b_{1} c_{2}^{2} d_{2}-b_{2} c_{2} d_{1} d_{2}-b_{2} c_{1}^{3}+b_{1} c_{2} c_{1}^{2}-b_{2} c_{2}^{2} c_{1}+b_{1} c_{2}^{3}, \\
\left.b_{1} c_{1}+b_{2} c_{2}\right\},
\end{gathered}
$$

whose Gröbner basis is again $\{1\}$, hence, the statement is proved.

Modelling in Graph Theory

Many practical problems concerning relationships, networks, scheduling, or assignments can be modelled mathematically in the language of graph theory. In this chapter, we present some basic concepts of graph theory and one example problem with an elegant algorithmic solution.

2.1 An Introductory Example

In GoogleMaps as well as in many modern cars you have the possibility to enter two geographical locations A and B and get "the shortest route" from A to B. Usually there are different choices for how to interpret "shortest". Of course, it will in most cases not mean "shortest euclidean distance", because in that case the solution would be trivial, hence uninteresting, namely the straight line through A and B. What makes the problem interesting and non-trivial is the underlying "network of streets", where a "route" from A to B is only allowed to follow these streets. Moreover, "shortest" can then mean "minimal w.r.t. length" or "minimal w.r.t. duration", i.e. the "quickest" route. Last but not least, various criteria can be applied for choosing appropriate streets, e.g. avoiding toll-road, avoiding highways, prefer scenic roads, calculate bicycle routes, etc. As an example see Figure 2.1, which shows the quickest bicycle route from JKU Linz to the RISC Institute in Hagenberg ${ }^{1}$.

Figure 2.1: Google Maps Route Planner

[^3]
2.2 Graph Theory

Graphs will turn out to be an appropriate mathematical model for a "network of streets" as needed in the routing example in Section 2.1. Informally speaking, in the heart of the concept of a graph is a collection of entities, called vertices, with connections between them, called edges or arcs, see Figure 2.2. There are different types of graphs, depending on whether for instance

- the connections are oriented or not,
- there can be more than one edge between to vertices,
- vertices connected by an edge must be distinct,
- edges have values associated,
- vertices have values associated,
- etc. etc.

Figure 2.2: A typical graph

Definition 2.1: Undirected Simple Graph, Directed Simple Graph

Let V be a set. The pair $G=(V, E)$ is called an undirected simple graph if and only if

$$
E \subseteq P(V) \text { and } \underset{a \in E}{\forall}|a|=2 .
$$

The pair (V, E) is called a directed simple graph if and only if

$$
E \subseteq V^{2} \text { and } \underset{a \in E}{\forall} a_{1} \neq a_{2} .
$$

We call G a simple graph if and only if it is an undirected or a directed graph. If G is a graph, then $V(G):=G_{1}$ and $E(G):=G_{2}$ are called the vertices and edges of G, respectively.

Note that we use sets for representing edges, which implies that there cannot be multiple edges between two vertices. For certain applications, however, it is necessary to allow
multiple edges between vertices. In these cases, the edges E can be defined as a multiset $E=(A, m)$, where

$$
\begin{array}{rr}
A=\{a \in P(V)| | a \mid=2\} & \text { (for undirected graphs) } \\
A=\left\{a \in V^{2} \mid a_{1} \neq a_{2}\right\} & \text { (for directed graphs) }
\end{array}
$$

and

$$
m: A \rightarrow \mathbb{N}_{0}
$$

The set A is the set of potential edges, and the function m gives the multiplicity of each edge, including the case $m(a)=0$ meaning that the graph does not contain the edge a. For a multiset $E=(A, m)$ we write $a \in E$ if and only if $a \in A$ and $m(a) \geq 1$.

In the multiset representation, the multiplicity of an edge tells us only, how many connections we have, but these are indistinguishable. If we want to have distinct edges, then we define the edges as $E=(X, e)$, where X is a set and

$$
e: X \rightarrow A \quad \text { with } A \text { as above. }
$$

For $E=(X, e)$ we write $a \in E$ if and only if $\underset{x \in X}{\exists} e(x)=a$.

EXAMPLE 2.2

Figure 2.3 shows different types of graphs. The leftmost is an undirected simple graph

$$
G_{1}=(\{1,2,3\},\{\{1,2\},\{2,3\}\}),
$$

second from left is a directed simple graph

$$
G_{2}=(\{1,2,3\},\{(1,2),(2,1),(1,3),(2,3)\}) .
$$

Second from right is not an undirected simple graph because it contains a double edge between 1 and 2 , which can be defined as

$$
G_{3}=(\{1,2,3\},(\{\{1,2\},\{1,3\},\{2,3\}\}, m)) \quad \text { with } m \text { defined by } \begin{array}{c|c}
a & m(a) \\
\hline\{1,2\} & 2 \\
\{1,3\} & 0 \\
\{2,3\} & 1
\end{array}
$$

Note that one cannot distinguish the two edges between 1 and 2 . The rightmost is not a simple directed graph either because it contains two distinct edges a and b from 1 to 2 , which can be defined as

$$
G_{4}=(\{1,2,3\},(\{a, b, c\}, e)) \quad \text { with } e \text { defined by } \quad \begin{array}{c|c}
x & e(x) \\
\hline a & (1,2) \\
b & (1,2) \\
c & (2,3)
\end{array}
$$

By definition, a simple graph cannot contain loops, i.e. edges connecting a vertex with itself. In an undirected graph, this would be an edge $\{u, u\}$, but $|\{u, u\}|=1$, whereas in a

Figure 2.3: Different types of graphs
directed graph it would be an edge $a=(u, u)$, but $a_{1}=u=a_{2}$. If loops should be permitted the restrictions $|a|=2$ and $a_{1} \neq a_{2}$, respectively, have to be relaxed.

From now on, if we say G is a graph then we mean a graph in one of the representations mentioned above. If we say G is a simple graph then we mean a simple undirected or a simple directed graph. If G is an undirected graph then we use $u v$ as an abbreviation for an edge $\{u, v\} \in E(G)$, if G is directed then $u v$ stands for an edge $(u, v) \in E(G)$.

Definition 2.3: Neighbour, Neighbourhood

Let G be a graph. The vertex v is a neighbour of vertex u if and only if $u v \in E(G)$. Furthermore, we call

$$
N_{G}(u):=\{v \in V(G) \mid v \text { is a neighbour of } u\}
$$

the neighbourhood of u (in G).

EXAMPLE 2.4

Using the graphs from Figure 2.3,

$$
\begin{array}{lll}
N_{G_{1}}(1)=\{2\} & N_{G_{1}}(2)=\{1,3\} & N_{G_{1}}(3)=\{2\} \\
N_{G_{2}}(1)=\{2,3\} & N_{G_{2}}(2)=\{1,3\} & N_{G_{2}}(3)=\{ \} \\
N_{G_{3}}(1)=\{2\} & N_{G_{3}}(2)=\{1,3\} & N_{G_{3}}(3)=\{2\} \\
N_{G_{4}}(1)=\{2\} & N_{G_{4}}(2)=\{3\} & N_{G_{4}}(3)=\{ \}
\end{array}
$$

Definition 2.5: Walk, Path

Let G be a graph, $n \geq 1$, and $a, b \in V(G)$. A finite sequence ${ }^{a} w: \mathbb{N}_{1,2 n+1} \rightarrow V(G) \cup E(G)$ is called a walk of length n from a to b in G if and only if

1. $\underset{0 \leq i \leq n}{\forall} w_{2 i+1} \in V(G)$,
2. $\underset{1 \leq i \leq n}{\forall} w_{2 i} \in E(G)$,
3. $w_{1}=a$ and $w_{2 n+1}=b$, and
4. $\underset{1 \leq i \leq n}{\forall} w_{2 i}=w_{2 i-1} w_{2 i+1}$.

Let w be a walk of length n from a to b in G, then the subsequences

$$
V(w): \mathbb{N}_{1, n+1} \rightarrow V(G), i \mapsto w_{2 i-1} \quad E(w): \mathbb{N}_{1, n} \rightarrow E(G), i \mapsto w_{2 i}
$$

are the sequence of vertices of w and the sequence of edges of w, respectively.
A finite sequence $t: \mathbb{N}_{1,2 n+1} \rightarrow V(G) \cup E(G)$ is called a trail of length n from a to b in G if and only if t is a walk of length n from a to b in G and $E(t)$ is injective (from $\mathbb{N}_{1, n}$ to $E(G)$).

A finite sequence $p: \mathbb{N}_{1,2 n+1} \rightarrow V(G) \cup E(G)$ is called a path of length n from a to b in G if and only if p is a trail of length n from a to b in G and $V(p)$ is injective (from $\mathbb{N}_{1, n+1}$ to $V(G)$).

```
'a}\mathrm{ Reminder: }\mp@subsup{\mathbb{N}}{m,n}{}:={i\in\mp@subsup{\mathbb{N}}{0}{}|m\leqi\leqn}
```

A walk is an arbitrary sequence of vertices connected by appropriate edges. A trail does not use any edge twice and a path in addition does not visit any vertex twice. A walk that is not a trail must use at least one edge more than once, which implies that it also visits some vertices more than once, namely those vertices that are connected by that edge.

The length n of a walk/trail/path addresses the number of edges in that walk/trail/path. If we omit the length or the start and end then we assume the respective entities existentially quantified, e.g. if p is a path from a to b in G then we mean a path of some length from a to b in G, or if p is a path of length n in G then we mean a path of length n from somewhere to somewhere in G, or if p is a path in G then we mean a path of some length from somewhere to somewhere in G.

EXAMPLE 2.6

$w=(2,(2,1), 1,(1,2), 2,(2,1), 1,(1,3), 3)$ is a walk of length 4 from 2 to 3 in G_{2}.

$$
V(w)=(2,1,2,1,3) \quad E(w)=((2,1),(1,2),(2,1),(1,3)),
$$

w is neither a trail nor a path in G_{2}.
$t=(2,(2,1), 1,(1,2), 2,(2,3), 3)$ is a trail of length 3 from 2 to 3 in G_{2}.

$$
V(t)=(2,1,2,3) \quad E(t)=((2,1),(1,2),(2,3)),
$$

t is not a path in G_{2}.
$p=(2,(2,1), 1,(1,3), 3)$ is a path of length 2 from 2 to 3 in G_{2}.

$$
V(p)=(2,1,3) \quad E(p)=((2,1),(1,3)) .
$$

Definition 2.7: Weighted Graph

The triple $G=(V, E, c)$ is called a weighted graph if and only if (V, E) is a graph and $c: E \rightarrow \mathbb{R}$. We call c the cost function of G and $c(e)$ the costs of an edge e.

All special properties of the graph (V, E), e.g. being simple, directed, undirected, translate directly to its weighted variant (V, E, c). A sequence is a walk/trail/path in (V, E, c) if and only if it is a walk/trail/path in (V, E).

Definition 2.8: Extended Cost Function, Distance

Let $G=(V, E, c)$ be a weighted graph and $F \subseteq E$. Then we extend the cost function c to

$$
c(F):=\sum_{e \in F} c(e) .
$$

Let w be a walk of length n from a to b in G, then a

$$
c(w):=\sum_{e \in E(w)} c(e) .
$$

The distance from a to b in G is

$$
\operatorname{dist}_{G}(a, b):=\min (\{c(w) \mid w \text { is a walk from } a \text { to } b \text { in } G\}) .
$$

[^4]
2.3 Modelling the Shortest-Connection-Problem

Our original problem from Section 2.1 can now be nicely formulated in the language of graph theory. Given a network of streets, we define the vertices

$$
V:=\{C \mid \text { there are streets } s \text { and } t \text { crossing at } C\} .
$$

Then all streets split into street segments between crossings, in other words, a street segment is characterized by its endpoints, i.e. two crossings c_{1} and c_{2} on the same street such that no other crossing lies between c_{1} and c_{2}. The street segments will become the edges connecting their endpoint crossings. If a street segment between c_{1} and c_{2} can be travelled in both directions, then an undirected edge $\left\{c_{1}, c_{2}\right\}$ is an appropriate model. If it can only be used in one direction, say from c_{1} to c_{2}, then a directed edge $\left(c_{1}, c_{2}\right)$ is an appropriate model. For typical street networks, directed edges are the better choice because these allow to model one-way streets and in case both directions are available we can use (c_{1}, c_{2}) and (c_{2}, c_{1}), thus

$$
E:=\left\{\left(c_{1}, c_{2}\right) \in V^{2} \mid \text { there is a street segment from } c_{1} \text { to } c_{2}\right\} .
$$

Every street segment $\left(c_{1}, c_{2}\right)$ has costs associated, which can be the geographical distance between the c_{1} and c_{2} or the time required to travel from c_{1} to c_{2}, depending on the application. Note, that the model with directed edges gives also more flexibility in this regard, because it allows to assign different times for the two directions, which is useful for instance when the street segment is a mountain road, where it is usually faster going down than going up. Note that the costs will always be non-negative, i.e.

$$
c: E \rightarrow \mathbb{R}_{0}^{+},(x, y) \mapsto \text { "costs" for going from } x \text { to } y
$$

The question of finding the "shortest connection" from A to B on the underlying network of roads is then just the following problem:

Problem 2.9: Shortest Path Problem

Given: The graph $G=(V, E, c)$ with appropriate cost function c and $A, B \in V$.
Find: $d=\operatorname{dist}_{G}(A, B)$ and p such that p is a path from A to B in G and $c(p)=d$.
Note that it is sufficient to find a path, we need not search for walks or trails. Assume a walk

$$
w=\left(A, e_{1}, \ldots, e_{k}, x, \ldots, x, e_{l}, \ldots, e_{n}, B\right)
$$

from A to B in G containing vertex x twice. Then take

$$
\bar{w}=\left(A, e_{1}, \ldots, e_{k}, x, e_{l}, \ldots, e_{n}, B\right),
$$

which certainly gives also a walk from A to B in G with $c(\bar{w}) \leq c(w)$, such that we can always construct a walk with costs at most $c(w)$ avoiding multiple vertices. Such a walk must be a path.

Note also that we modeled the graph above as a simple graph, i.e. a graph without multiple edges and loops. If the original street network contains multiple edges, which might be the case in real world (think of examples!), then we choose the one with least cost and only put this edge into E, hence avoiding multiple edges. Consider a and b being both edges from x to y and $c(a) \leq c(b)$ and assume a path

$$
p=\left(A, e_{1}, \ldots, x, b, y, \ldots, e_{n}, B\right)
$$

from A to B in G. Then take

$$
\bar{p}=\left(A, e_{1}, \ldots, x, a, y, \ldots, e_{n}, B\right),
$$

which certainly gives also a path from A to B in G with $c(\bar{p}) \leq c(p)$, such that we can always construct a path with costs at most $c(p)$ avoiding edge b. Similary, we can eliminate loops contained in G. Consider a being a loop from x to x and assume a trail

$$
p=\left(A, e_{1}, \ldots, e_{k}, x, a, x, e_{l}, \ldots, e_{n}, B\right)
$$

from A to B in G. Then take

$$
\bar{p}=\left(A, e_{1}, \ldots, e_{k}, x, e_{l}, \ldots, e_{n}, B\right),
$$

which certainly gives also a path from A to B in G with $c(\bar{p}) \leq c(p)$ since $c(a) \geq 0$, such that we can always construct a path with costs at most $c(p)$ avoiding loop a.

2.4 An Algorithm for Solving the Shortest Path Problem

We will now briefly describe Dijkstra's algorithm for solving the shortest path problem. In fact, the algorithms solves a slightly more general problem, namely it computes dist ${ }_{G}(A, v)$ for all $v \in V \backslash\{A\}$ and it allows to reconstruct shortest paths from A to v for all $v \in V \backslash\{A\}$.

The basic idea of the algorithm is to maintain two sets of vertices C and $O=V \backslash C$, where

- C contains the closed vertices v, for which $\operatorname{dist}_{G}(A, v)$ is already known and
- O are the remaining open vertices v, for which only a tentative distance $l(v)$ from A is known. In fact, $l(v)$ is the shortest distance from A on a path containing only vertices in C except the final vertex v.

Data: $G=(V, E, c)$ a simple weighted directed graph, $A \in V$.
Result: $\operatorname{dist}_{G}(A, v)$ for all $v \in V$,
$\operatorname{pre}_{G}(v)$ for all $v \in V$ such that ${ }^{a} P \asymp\left(\left(\operatorname{pre}_{G}(v), v\right), v\right)$ is a shortest path from A to v in G, where P is a shortest path from A to $\operatorname{pre}_{G}(v)$ in G.

```
\(C=\emptyset, O=V, l(A)=0\)
for \(v \in V \backslash\{A\}\) do
    \(l(v)=\infty\)
end
while \(O \neq \emptyset\) do
    \(v=\) such an \(o \in O\) with \(l(o) \leq l(x)\) for all \(x \in O\)
    \(C=C \cup\{v\}, O=O \backslash\{v\}\)
    \(\operatorname{dist}_{G}(A, v)=l(v)\)
    for \(w \in N_{G}(v)\) do
        if \(l(w)>\operatorname{dist}_{G}(A, v)+c(v w)\) then
            \(l(w)=\operatorname{dist}_{G}(A, v)+c(v w)\)
            \(\operatorname{pre}_{G}(w)=v\)
        end
    end
end
```


Algorithm 1: Dijkstra's Algorithm

${ }^{a}$ We write $a \asymp b$ for the concatenation of tuples a and b.
Upon termination of the algorithm $\operatorname{dist}_{G}(A, v)$ contains the shortest distance from A to v in G for all vertices v. If $\operatorname{dist}_{G}(A, v)=\infty$ then there is no path from A to v in G.

Figure 2.4: A weighted graph

EXAMPLE 2.10

Let us consider the graph depicted in Figure 2.4. After initialization we have $C=\emptyset$, $O=V$ and

v	A	1	2	3	B
$l(v)$	0	∞	∞	∞	∞

In the first run through the while-loop, we choose $v=\mathrm{A}$, hence $C=\{\mathrm{A}\}$ and $O=\{1,2,3, \mathrm{~B}\}$. We set $\operatorname{dist}_{G}(\mathrm{~A}, \mathrm{~A})=0$ and compute $N_{G}(\mathrm{~A})=\{1,2\}$, hence we update

v	A	1	2	3	B
$l(v)$	0	6	5	∞	∞

and set $\operatorname{pre}_{G}(1)=\mathrm{A}$ and $\operatorname{pre}_{G}(2)=\mathrm{A}$. Next we choose $v=2$, hence $C=\{\mathrm{A}, 2\}$ and $O=\{1,3, \mathrm{~B}\}$. We set $\operatorname{dist}_{G}(\mathrm{~A}, 2)=5$ and compute $N_{G}(2)=\{3, \mathrm{~B}\}$, hence we update

v	A	1	2	3	B
$l(v)$	0	6	5	10	9

and set $\operatorname{pre}_{G}(3)=2$ and $\operatorname{pre}_{G}(\mathrm{~B})=2$. Next we choose $v=1$, hence $C=\{\mathrm{A}, 2,1\}$ and $O=\{3, \mathrm{~B}\}$. We set $\operatorname{dist}_{G}(\mathrm{~A}, 1)=6$ and compute $N_{G}(1)=\{2,3\}$, hence we update

v	A	1	2	3	B
$l(v)$	0	6	5	7	9

and set $\operatorname{pre}_{G}(3)=1$. Next we choose $v=3$, hence $C=\{\mathrm{A}, 2,1,3\}$ and $O=\{\mathrm{B}\}$. We set $\operatorname{dist}_{G}(\mathrm{~A}, 3)=7$ and compute $N_{G}(3)=\{\mathrm{B}\}$, hence we update

v	A	1	2	3	B
$l(v)$	0	6	5	7	8

and set $\operatorname{pre}_{G}(\mathrm{~B})=3$. Finally, we take $v=\mathrm{B}$, hence $C=\{\mathrm{A}, 2,1,3, \mathrm{~B}\}$ and $O=\emptyset$. We set $\operatorname{dist}_{G}(\mathrm{~A}, \mathrm{~B})=8$, no more updates necessary and we exit the while-loop.

We have all distances from A to v in $\operatorname{dist}_{G}(\mathrm{~A}, v)$, and we can reconstruct the shortest path using $\operatorname{pre}_{G}(v)$. The final path is

$$
(\mathrm{A},(\mathrm{~A}, 1), 1,(1,3), 3,(3, \mathrm{~B}), \mathrm{B}) .
$$

Why does Dijkstra's algorithm work? The algorithm maintains a loop invariant, namely

$$
\begin{align*}
\underset{x \in C, u \in N_{G}(x)}{\forall} l(u) & \leq \operatorname{dist}_{G}(A, x)+c(x u) \tag{2.1}\\
\forall_{x \in C}^{\forall} l(x) & =\operatorname{dist}_{G}(A, x) \tag{2.2}\\
\underset{o \in O}{\forall} l(o) & \geq \operatorname{dist}_{G}(A, o) . \tag{2.3}
\end{align*}
$$

Before the algorithm enters the while-loop for the first time, (2.1) and (2.2) clearly hold due to $C=\emptyset$, and (2.3) holds because of $O=V$ and $l(A)=0=\operatorname{dist}_{G}(A, A)$ and $l(o)=\infty \geq$ $\operatorname{dist}_{G}(A, o)$ for all $o \neq A$. Now assume (2.1), (2.2), and (2.3) hold at the beginning of one pass through the loop, we will show that (2.1), (2.2), and (2.3) then also hold at the end of that pass, i.e. we have to show

$$
\begin{align*}
\underset{x \in C \cup\{v\}, u \in N_{G}(x)}{\forall} l(u) & \leq \operatorname{dist}_{G}(A, x)+c(x u) \tag{2.4}\\
\underset{x \in C \cup\{v\}}{\forall} l(x) & =\operatorname{dist}_{G}(A, x) \tag{2.5}\\
\underset{o \in O \backslash\{v\}}{\forall} l(o) & \geq \operatorname{dist}_{G}(A, o) . \tag{2.6}
\end{align*}
$$

Proof of (2.4): Let $x \in C \cup\{v\}$ and $u \in N_{G}(x)$. In case $x \in C, l(u) \leq \operatorname{dist}_{G}(A, x)+c(x u)$ is true by assumption (2.1). Now let $x=v$. By the algorithm, we have $l(w) \leq \operatorname{dist}_{G}(A, v)+c(v w)$ for all $w \in N_{G}(v)$ after finishing the for-loop, hence $l(u) \leq \operatorname{dist}_{G}(A, x)+c(x u)$.

Proof of (2.5): Let $x \in C \cup\{v\}$. In case $x \in C, l(x)=\operatorname{dist}_{G}(A, x)$ is true by assumption (2.2). Now let $x=v$. First of all we show $l(x) \leq \operatorname{dist}_{G}(A, x)$ by contradiction, hence, we assume $l(x)>\operatorname{dist}_{G}(A, x)$, i.e. there must be a path P from A to x in G with $c(P)=\operatorname{dist}_{G}(A, x)<$ $l(x) . P$ contains at least one vertex in O since $x=v \in O$, hence, there is a minimal i such that $p_{i}:=V(P)_{i} \in O$. We then have $l\left(p_{i}\right) \leq \operatorname{dist}_{G}\left(A, p_{i}\right)$ because
case $i=1$: then $p_{1}=A$ and $l\left(p_{1}\right)=l(A)=0=\operatorname{dist}_{G}(A, A)=\operatorname{dist}_{G}\left(A, p_{1}\right)$ and
case $i>1$: from the minimality of i we get $p_{i-1}:=V(P)_{i-1} \in C$ and clearly $p_{i} \in N_{G}\left(p_{i-1}\right)$, hence

$$
l\left(p_{i}\right) \stackrel{(2.1)}{\leq} \operatorname{dist}_{G}\left(A, p_{i-1}\right)+c\left(p_{i-1} p_{i}\right)=c\left(P_{1: 2 i-1}\right)=\operatorname{dist}_{G}\left(A, p_{i}\right) .
$$

Note that the last equality holds, because P is a path with lowest costs from A to x. Therefore, any subpath of P from A to b must be one with lowest costs to b, because otherwise P would not have lowest costs to x.

Finally, we have the contradiction

$$
\begin{gathered}
\text { choice of } v \\
l(x)=l(v) \leq l\left(p_{i}\right) \leq \operatorname{dist}_{G}\left(A, p_{i}\right) \leq \operatorname{dist}_{G}(A, x)<l(x) .
\end{gathered}
$$

Thus, $l(x) \leq \operatorname{dist}_{G}(A, x)$ and together with $l(x)=l(v) \geq \operatorname{dist}_{G}(A, v)=\operatorname{dist}_{G}(A, x)$ by assumption (2.3) since $v \in O$ we have $l(x)=\operatorname{dist}_{G}(A, x)$.
Proof of (2.6): Let $o \in O \backslash\{v\}$. In case $l(o)=\infty$ then $l(o)=\infty \geq \operatorname{dist}_{G}(A, o)$ is trivial. Otherwise $l(o)$ reflects the costs of a concrete path from A to o, hence $l(o) \geq \operatorname{dist}_{G}(A, o)$, by definition of $\operatorname{dist}_{G}(A, o)$.

Remark 2.11

As already mentioned earlier the algorithm computes the shortest distances from A to all v in G. If one is only interested in the shortest distances from A to B then the whileloop can be terminated as soon as $v=B$ has been chosen and $\operatorname{dist}_{G}(A, B)$ has been set. Those $\operatorname{dist}_{G}(A, v)$ that have been set until then are the true shortest distances, but there may be vertices v, for which $\operatorname{dist}_{G}(A, v)$ is still undefined.

Remark 2.12

For a real implementation of Dijkstra's algorithm one should use special data-structures for storing O such that the choice of v as the $o \in O$ with minimal tentative distance can be performed efficiently. Keywords in this respect are k-heaps or Fibonacci heaps.

2.5 A Real-World Problem

As an example, we used a graph representing the street network of New York City, which is freely available from http://users.diag.uniroma1.it/challenge9/download.shtml. Geographical coordinates of all vertices are also available such that the street crossings can actually be visualized on a map of New York City. We have only used a small fragment of the

Figure 2.5: Street crossings defining street segments
vertives and edges such that computation of shortest paths was still feasible in Mathematica. Figures 2.5 shows the street crossings with their real-world positions on a map and Figure 2.6 shows the whole graph with all connections between vertices.

We then chose the west-most point as starting point A and the east-most point as the end point B and compute a shortest path using the Mathematica command FindShortestPath, which computes a path of length 22 . The abstract graph with the edges of the shortest path highlighted and the corresponding path on the New Yourk City map are shown in Figures 2.7 and 2.8.

Figure 2.6: Street crossings and street segments as a directed graph

Figure 2.7: Street crossings defining street segments and the shortest path between two points

Figure 2.8: The shortest path on the map

Modelling in Combinatorial Optimization

Combinatorial optimization usually deals with the optimization of an objective function over a finite domain. In most of the cases the variables are restricted to integers or natural numbers and there are restrictions that allow only finitely many feasible solutions. Although in principle possible, exhaustive search through all finitely many feasible solutions is practically not an option because of their huge number. Probably the most famous combinatorial optimization problem is the travelling salesman problem, other examples are the minimum spanning tree problem, the knapsack problem, or the bin packing problem.

3.1 An Introductory Example

Suppose we run an online shop and we deliver our goods in boxes of maximum capacity C. We have a concrete order with n items of sizes s_{1}, \ldots, s_{n}, respectively. The size of an item could be for instance the weight or the volume and the capacity would then be the maximum weight allowed or the maximum space available in the box. The question is how to pack the items into a minimal number of boxes such that all capacity restrictions are still satisfied. In case the capacity is interpreted as volume we neglect the geometrical problem of fitting items of a certain shape into the boxes having a certain shape, i.e. if we have items with a total volume of x then we assume these items fit into a box with volume $V \geq x$. It is clear that in practice, by the geometry of the box and the items, this might lead to inappropriate solutions. As a simple example, consider a sphere of volume 1 , which has a diameter of ≈ 1.24. Clearly, the sphere does not fit into a unit cube with side lenghts 1, although the volume restriction would be satisfied.

3.2 Modelling the Packing Problem

The problem described in Section 3.1 is known in literature as the bin packing problem.

$$
\text { Problem 3.1: Bin Packing Problem } B P P(a, A)
$$

Given: Positive numbers a_{1}, \ldots, a_{n}, A.
Find: $k \in \mathbb{N}$ and $p: \mathbb{N}_{1, n} \rightarrow \mathbb{N}_{1, k}$ such that

$$
\underset{1 \leq j \leq k}{\forall} \sum_{\substack{i \\ p(i)=j}} a_{i} \leq A .
$$

We consider n items I_{1}, \ldots, I_{n} and need to find a number k of bins B_{1}, \ldots, B_{k} such that each I_{i} goes into one of the B_{j}. The packing function p assigns each item index i a bin index j,
and $p(i)=j$ means that item I_{i} is packed into bin B_{j}. If k and p satisfy the above conditions we call the pair (k, p) a feasible solution (for $\operatorname{BPP}(a, A)$).

Often, in particular in the context of complexity theory, problems are stated as decision problems. For the bin packing problem, this variant is the following.

Problem 3.2: Bin Packing Decision Problem $\operatorname{BPDP(a,~} A, k)$

Given: Positive numbers a_{1}, \ldots, a_{n}, A and $k \in \mathbb{N}$.
Question: Does there exist a function $p: \mathbb{N}_{1, n} \rightarrow \mathbb{N}_{1, k}$ such that (k, p) a feasible solution for $\operatorname{BPP}(a, A)$?

If there is a feasible solution (k, p) for the bin packing problem then of course (m, q) is again a feasible solution for all $m>k$ and $q: \mathbb{N}_{1, n} \rightarrow \mathbb{N}_{1, m}$ such that $q(i)=p(i)$ for all $1 \leq i \leq n$, hence there are infinitely many solutions. It is then pretty natural to ask for the best possible solution.

Problem 3.3: Bin Packing Optimization Problem $\operatorname{BPOP(a,A)}$
Given: Positive numbers a_{1}, \ldots, a_{n}, A.
Find: $k \in \mathbb{N}$ and $p: \mathbb{N}_{1, n} \rightarrow \mathbb{N}_{1, k}$ such that

1. (k, p) a feasible solution for $\operatorname{BPP}(a, A)$ and
2. k is minimal, i.e.

$$
\underset{m<k}{\forall} \underset{q: \mathbb{N}_{1, n} \rightarrow \mathbb{N}_{1, m}}{\forall}(m, q) \text { is not a feasible solution for } \operatorname{BPP}(a, A) .
$$

3.2.1 Bin Packing as a Linear Programming Problem

A first approach for solving the optimal bin packing problem is to re-formulate the problem as a linear programming (linear optimization) problem. First we observe that $k \leq n$. We introduce binary decision variables $\alpha_{i j}$ for $1 \leq i, j \leq n$ and β_{j} for $1 \leq j \leq n$ with the following meaning:

$$
\alpha_{i j}:=\left\{\begin{array}{ll}
1 & \text { item } I_{i} \text { goes into bin } B_{j} \\
0 & \text { otherwise }
\end{array} \quad \beta_{j}:= \begin{cases}1 & \text { bin } B_{j} \text { will be occupied } \\
0 & \text { otherwise }\end{cases}\right.
$$

The feasibility of a solution for the bin packing problem can then be described by

$$
\begin{gather*}
\underset{1 \leq j \leq n}{\forall} \sum_{i=1}^{n} \alpha_{i j} a_{i} \leq A \beta_{j} \tag{3.1}\\
\underset{1 \leq i \leq n}{\forall} \sum_{j=1}^{n} \alpha_{i j}=1, \tag{3.2}
\end{gather*}
$$

where (3.1) captures the capacity restrictions for each bin and (3.2) enforces that each article goes into exactly one bin. The number of bins used is obviously $\sum_{j=1}^{n} \beta_{j}$, hence, (3.1)
and (3.2) together with

$$
\begin{equation*}
\sum_{j=1}^{n} \beta_{j} \longrightarrow \operatorname{Min} \tag{3.3}
\end{equation*}
$$

form an integer linear programming problem with the integer variables

$$
\alpha_{i j} \in\{0,1\} \text { for } 1 \leq i, j \leq n \quad \text { and } \quad \beta_{j} \in\{0,1\} \text { for } 1 \leq j \leq n .
$$

The standard form of a linear programming problem for variables $x \in \mathbb{R}^{t}$ is usually given as

$$
\begin{array}{ll}
M \cdot x \equiv b & \text { with } M \in \mathbb{R}^{s \times t}, b \in \mathbb{R}^{s}, \equiv \in\{\leq,=, \geq\} \\
c \cdot x \longrightarrow \text { Min } & \text { with } c \in \mathbb{R}^{t}
\end{array}
$$

For the bin packing problem, the setting from above results in $x \in \mathbb{R}^{n^{2}+n}$ with

$$
x_{v}:= \begin{cases}\alpha_{q+1, r+1} & 1 \leq v \leq n^{2},(q, r)=\operatorname{QuotRem}(v-1, n) \\ \beta_{v-n^{2}} & n^{2}+1 \leq v \leq n^{2}+n .\end{cases}
$$

Since $v=n q+r+1$ we get

$$
\alpha_{i j}=x_{n(i-1)+j} \quad \beta_{j}=x_{n^{2}+j}
$$

The Matrix M The capacity restrictions (3.1) will be reflected in the first n rows of the matrix $M \in \mathbb{R}^{(2 n) \times\left(n^{2}+n\right)}$, hence, M must fulfill for $1 \leq j \leq n$

$$
(M \cdot x)_{j}=\underbrace{\sum_{v=1}^{n^{2}+n} M_{j v} x_{v}}_{(*)}=\sum_{i=1}^{n} \alpha_{i j} a_{i}-A \beta_{j}=\underbrace{\sum_{i=1}^{n} x_{n(i-1)+j} a_{i}-A x_{n^{2}+j}}_{(* *)} .
$$

We compare the coefficients $M_{j v}$ of x_{v} in $(*)$ with those in the last expression ($* *$):

- If $v=n(i-1)+j$ for some $1 \leq i \leq n$ then the coefficient is $M_{j v}=a_{i}$. Note, that the condition is equivalent to $v \bmod n=j \bmod n$.
- If $v=n^{2}+j$ then the coefficient is $M_{j v}=-A$.
- For all other coefficients we have $M_{j v}=0$, in other words

$$
1 \leq j \leq n \Rightarrow M_{j v}:= \begin{cases}a_{\frac{v-j}{n}+1} & (v \bmod n=j \bmod n) \wedge v \leq n^{2} \\ -A & v=n^{2}+j \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, the restrictions (3.2) will be reflected in the rows $n+1$ to $2 n$ of M, hence, M must fulfill for $1 \leq i \leq n$

$$
(M \cdot x)_{n+i}=\underbrace{\sum_{v=1}^{n^{2}+n} M_{n+i, v} x_{v}}_{(*)}=\sum_{j=1}^{n} \alpha_{i j}=\underbrace{\sum_{j=1}^{n} x_{n(i-1)+j}}_{(* *)} .
$$

We compare the coefficients $M_{n+i, v}$ of x_{v} in $(*)$ with those in the last expression $(* *)$:

- If $n(i-1)+1 \leq v \leq n i$ then the coefficient is $M_{n+i, v}=1$.
- For all other coefficients we have $M_{n+i, v}=0$, in other words (with $i=j-n$)

$$
j>n \Rightarrow M_{j v}:= \begin{cases}1 & n(j-n-1)+1 \leq v \leq n(j-n) \\ 0 & \text { otherwise. }\end{cases}
$$

The right-hand side b is a vector $b \in \mathbb{R}^{2 n}$ with $b_{j}:= \begin{cases}0 & 1 \leq j \leq n \\ 1 & \text { otherwise } .\end{cases}$
The restrictions $(M \cdot x)_{j} \equiv b_{j}: \equiv:= \begin{cases}\leq & 1 \leq j \leq n \\ = & \text { otherwise } .\end{cases}$
The objective function is represented through the vector $c \in \mathbb{R}^{n^{2}+n}$, which must fulfill

$$
c \cdot x=\underbrace{\sum_{v=1}^{n^{2}+n} c_{v} x_{v}}_{(*)}=\sum_{j=1}^{n} \beta_{j}=\underbrace{\sum_{j=1}^{n} x_{n^{2}+j}}_{(* *)} .
$$

We compare the coefficients of x_{v} in $(*)$ with those in the last expression $(* *)$:

- If $1 \leq v \leq n^{2}$ then the coefficient is $c_{v}=0$.
- For all other coefficients we have $c_{v}=1$, in other words

$$
c_{v}:= \begin{cases}0 & 1 \leq v \leq n^{2} \\ 1 & \text { otherwise } .\end{cases}
$$

We write $\operatorname{BPLPP}(a, A)$ for this problem.
It is easy to reconstruct a solution (k, p) of $\operatorname{BPOP}(a, A)$ from a solution (α, β) of $\operatorname{BPLPP}(a, A)$. For this, let $k:=\sum_{j=1}^{n} \beta_{j}$ and let $\pi: \mathbb{N}_{1, n} \rightarrow \mathbb{N}_{1, n}$ be a permutation of $\mathbb{N}_{1, n}$ such that

$$
\begin{equation*}
\underset{1 \leq j \leq k}{\forall} \beta_{\pi(j)}=1 \wedge \underset{k<j \leq n}{\forall} \beta_{\pi(j)}=0 . \tag{3.4}
\end{equation*}
$$

π permutes the bins in such a way that the first k bins $\beta_{\pi(1)}, \ldots, \beta_{\pi(k)}$ will be occupied and the remaining $n-k$ bins $\beta_{\pi(k+1)}, \ldots, \beta_{\pi(n)}$ are empty. From (3.2) it follows immediately that for every $1 \leq i \leq n$ there is a unique $1 \leq j \leq n$ with $\alpha_{i j}=1$, thus the function

$$
p: \mathbb{N}_{1, n} \rightarrow \mathbb{N}_{1, k}, i \mapsto \text { the unique } j \text { with } \alpha_{i \pi(j)}=1
$$

is well-defined, since π just permutes the columns of $\left(\alpha_{i j}\right)$ in such a way that zero-columns are moved to the end. In order to see that (k, p) is feasible, we take $1 \leq j \leq k$ arbitrary but fixed and now

$$
\sum_{\substack{i \\ p(i)=j}} a_{i}=\sum_{\substack{i \\ \alpha_{i \pi(j)}=1}} a_{i}=\sum_{i=1}^{n} \alpha_{i \pi(j)} a_{i} \stackrel{(3.1)}{\leq} A \beta_{\pi(j)} \stackrel{(3.4)}{=} A
$$

The minimality of k follows easily from the definition of k together with (3.3).

EXAMPLE 3.4

Consider 7 articles with weights

$$
a_{1}=0.2 \quad a_{2}=0.5 \quad a_{3}=0.4 \quad a_{4}=0.7 \quad a_{5}=0.1 \quad a_{6}=0.3 \quad a_{7}=0.8
$$

and bins with maximum capacity of 1 . The formulation as a linear programming problem now assumes at most $n=7$ bins and introduces 49 variables $\alpha_{11}, \ldots, \alpha_{77}$ plus 7 variables $\beta_{1}, \ldots, \beta_{7}$, hence, a total of 56 variables. We have 7 capacity restrictions (3.1)

$$
0.2 \alpha_{1 j}+0.5 \alpha_{2 j}+0.4 \alpha_{3 j}+0.7 \alpha_{4 j}+0.1 \alpha_{5 j}+0.3 \alpha_{6 j}+0.8 \alpha_{7 j} \leq \beta_{j} \quad \text { for } 1 \leq j \leq 7
$$

and 7 unicity restrictions (3.2)

$$
\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3}+\alpha_{i 4}+\alpha_{i 5}+\alpha_{i 6}+\alpha_{i 7}=1 \quad \text { for } 1 \leq i \leq 7,
$$

which results in a solution

$$
\begin{gathered}
(1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0, \\
0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0)
\end{gathered}
$$

which translates into $k=3$ and a mapping p for the articles

$$
p(1)=1 \quad p(2)=2 \quad p(3)=2 \quad p(4)=3 \quad p(5)=2 \quad p(6)=3 \quad p(7)=1 .
$$

3.2.2 Heuristic Approximation Algorithms for the Bin Packing Problem

For big instances of bin packing problems the integer linear programming problem can be computationally very expensive. Therefore, approximation algorithms based on heuristics are very popular for solving huge bin packing problems.

In the following, we write P for a problem and $P(x)$ for an instance of problem P with input x. If A is an algorithm, then $A(x)$ denotes the result of algorithm A applied to input x.

Definition 3.5: Approximation Algorithm

Let P be an optimization problem and \bar{P} the relaxed problem ignoring optimality. We call A an approximation algorithm for problem P if and only if every $y=A(x)$ is still a solution of $\bar{P}(x)$ but not necessarily a solution of $P(x)$.

Definition 3.6: Approximation Quality

Let P be an optimization problem and $y(x)$ a solution for $P(x)$. Let furthermore $k \geq 1$. We call A a k-approximation algorithm for problem P if and only if for all admissible inputs x of P

$$
A(x) \begin{cases}\leq k y(x) & \text { if } P \text { is a minimization problem } \\ \geq \frac{1}{k} y(x) & \text { if } P \text { is a maximization problem }\end{cases}
$$

Theorem 3.7

If $P \neq N P^{a}$, then there is no k-approximation algorithm for the optimal bin packing problem with $k<\frac{3}{2}$.

${ }^{a}$ we do not go into details

Data: Positive numbers a_{1}, \ldots, a_{n}, A.
Result: k, p such that (k, p) is a solution for the bin packing problem

$$
k=0
$$

sort a into decreasing order
for $j=1, \ldots, n$ do
$c_{j}=A$
end
for $i=1, \ldots, n$ do
$m=0$
for $j=1, \ldots, k$ do if $a_{i} \leq c_{j}$ then
$m=j$
$p(i)=j$
$c_{j}=c_{j}-a_{i}$
end
end
if $m=0$ then
$k=k+1$
$p(i)=k$
$c_{k}=c_{k}-a_{i}$
end
end
Algorithm 2: First Fit Decreasing Heuristic (FFD)

Theorem 3.8

FFD is a $\frac{3}{2}$-approximation algorithm for the optimal bin packing problem.

Theorem 3.9

For all instances x of the bin packing problem with solution $y(x)$ we have

$$
\operatorname{FFD}(x) \leq \frac{11}{9} y(x)+\frac{2}{3} .
$$

Example 3.10

Consider again 7 articles with weights
$a_{1}=0.2$
$a_{2}=0.5$
$a_{3}=0.4 \quad a_{4}=0.7$
$a_{5}=0.1$
$a_{6}=0.3$
$a_{7}=0.8$
and bins with maximum capacity of 1 . Running the FFD-algorithm on this instance of the bin packing problem gives the same solution as shown in Example 3.4.

[^0]: ${ }^{1}$ The concept of Gröbner bases and, most importantly, the first algorithm to compute a Gröbner basis for arbitrary G were invented by Bruno Buchberger, the founder of RISC, the Research Institute for Symbolic Computation at JKU Linz.

[^1]: ${ }^{2}$ Note that inequations of the form $p \neq 0$ are covered in this setting as well because $p \neq 0 \equiv \neg(p=0)$, hence, an inequation is a boolean combination of an equality.

[^2]: ${ }^{3}$ We used the product trick also when we expressed the condition $c_{1} \neq 0 \vee c_{2} \neq 0$ in Section 1.2.2.

[^3]: ${ }^{1}$ Note, however, that $1 h 27$ for not even 20 km is a bit exaggerated.

[^4]: ${ }^{a}$ Strictly speaking, $e \in E(w)$ does not make sense, because $E(w)$ is, by definition, a finite sequence and not a set. $e \in E(w)$ is meant as a conveniant shortcut notation for $\underset{1<i<n}{\exists} E(w)_{i}=e$.

