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Introduction

What is this course about?

� Application of techniques from symbolic computation.
� Rooted in computer algebra, algebraic geometry, computational logic.
� Focus is on correct formalization, precise analysis, exact solving (rather than on

fast but numerically approximated computations).

� Modeling and analysis of problems in various application domains.
� Symbolic summation and sequences, geometry and discrete mathematics,

programs and computational systems, . . .

� Theoretical frameworks and practical tools.
� Computer algebra and automated reasoning software.

Prerequisites for the algorithmization and automation of mathematics.
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Contents

What are you going to see?

� Symbolic Summation and the Modeling of Sequences.
� Carsten Schneider.

� Logic Models of Problems and Computations.
� Wolfgang Schreiner.

� Modeling Problems in Geometry and Discrete Mathematics.
� Wolfgang Windsteiger.

A (non-exhaustive) selection of topics pursued at the RISC institute.
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Example: a challenging email
From: Doron Zeilberger

To: Robin Pemantle, Herbert Wilf

CC:Carsten Schneider

Robin and Herb,

I am willing to bet that Carsten Schneider's SIGMA package

for handling sums with harmonic numbers (among others)

can do it in a jiffy. I am Cc-ing this to Carsten.

Carsten: please do it, and Cc- the answer to me.

-Doron
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The problem
From: Robin Pemantle [University of Pennsylvania]

To: herb wilf; doron zeilberger

Herb, Doron,

I have a sum that, when I evaluate numerically, looks

suspiciously like it comes out to exactly 1.

Is there a way I can automatically decide this?

The sum may be written in many ways, but one is:

∞∑
k=1

Hk+1 − 1

k(k + 1)

∞∑
j=1

Hj

j( j + k)

with

Hj :=

j∑
i=1

1

i
(= Hj)

[arose in the analysis of the simplex algorithm on the Klee-Minty cube]
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The summation paradigms

A(k) =
∞∑
j=1

Hj

j( j + k)

where

ζ(z) =
∞∑
i=1

1

iz
H(2)
k
=

k∑
i=1

1

i2
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The summation paradigms

k2A(k) − (k + 1)(2k + 1)A(k + 1) + (k + 1)(k + 2)A(k + 2) =
1

k + 1

Recurrence finder

A(k) =
∞∑
j=1

Hj

j( j + k)

{

Hk
k +

1
k +

kH2
k − 2Hk + kH(2)

k
2k2

| c1, c2 ∈ R}

where
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1
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The summation paradigms

k2A(k) − (k + 1)(2k + 1)A(k + 1) + (k + 1)(k + 2)A(k + 2) =
1

k + 1
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∞∑
j=1

Hj

j( j + k)
∈ {c1

Hk
k + c2 1

k +
kH2

k − 2Hk + kH(2)
k

2k2
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In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[2]:= mySum =
a
∑

k=1

Hk

k(k + n)

In[3]:= rec = GenerateRecurrence[mySum, n][[1]]

Out[3]= n2SUM[n] − (n + 1)(2n + 1)SUM[n + 1] + (n + 1)(n + 2)SUM[n + 2] ==
(−a − 1)Ha

(a + n + 1)(a + n + 2)
+

a

(n + 1)(a + n + 1)

In[4]:= rec = LimitRec[rec, SUM[n], {n}, a]

Out[4]= n2SUM[n] − (n + 1)(2n + 1)SUM[n + 1] + (n + 1)(n + 2)SUM[n + 2] =
1

n + 1

In[5]:= recSol = SolveRecurrence[rec, SUM[n]]

Out[5]= {{0,
1

n
}, {0,

n∑
i=1

1

i

n
−

1

n2
}, {1,

( n∑
i=1

1

i

)
2

2n
−

n∑
i=1

1

i

n2
+

n∑
i=1

1

i2

2n
}}

In[6]:= FindLinearCombination[recSol, {1, {ζ2, 1/2 + ζ2/2}}, n, 2]

Out[6]= −

n∑
i=1

1

i

n2
+

( n∑
i=1

1

i

)
2

2n
+

n∑
i=1

1

i2

2n
+
ζ2
n
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Example

S =
∞∑
k=1

Hk+1 − 1

k(k + 1)

∞∑
j=1

Hj

j( j + k)︸           ︷︷           ︸
=
ζ(2)

k
+

kH2
k
− 2Hk + kH(2)

k

2k2

= − 4ζ(2) − 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5) = 0.999222...

Exploring nested sums and related integrals (IV)
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The basic idea (special case telescoping)
FIND g(k):

Hk = g(k + 1) − g(k)

11/46



The basic idea (special case telescoping)
FIND g(k):

Hk = g(k + 1) − g(k)

A difference ring for the summand:

Construct a formal ring

(A, σ) RΠΣ-ring

A := Q(x)︸︷︷︸
rat. fu. field

[s]

︸        ︷︷        ︸
polynomial ring

Karr 1981, Schneider 2001–

and a ring automorphism σ : A→ A defined by

σ(c) = c ∀c ∈ Q,

σ(x) = x + 1, S k = k + 1,

σ(s) = s +
1

x + 1
, S Hk = Hk +

1

k + 1
.

with
constσ(A) = {c ∈ A | σ(c) = c} = Q
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The basic idea (special case telescoping)
GIVEN FIND g(k):

Hk = g(k + 1) − g(k)

FIND g ∈ A:

x ≡ k
s ≡ Hk

s = σ(g) − g

recursive ansatz

g = x s − x
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The basic idea (special case telescoping)
GIVEN FIND g(k):

Hk = g(k + 1) − g(k)

Summation of the telescoping equation over k from 1 to n yields
n∑

k=1

Hk = g(n + 1) − g(1)

=(n + 1)Hn+1 − (n + 1).
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Modeling of sequences (built by nested sums/products)

H = Sum(1, 1x ) ev(H, k) =
k∑
i=1

1

i

term algebra

ev
((

OO

ev

��

user interface ring of sequences

(Hk)k≥0 = (0,1,
3
2 , . . . )

formal difference rings

ev

66

s ∈ Q(x)[s] ev(s, k) =
k∑
i=1

1

i

computer algebra algorithms
(for unique representations,
recurrence finding and solving)
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Possible proseminar topics

1. Carry out a concrete (non-trivial example) and present details on the different
modeling layers

2. Elaborate on canonical simplifiers (unique representation) and the
simplification of summation objects in the difference ring setting

3. The interaction of term algebras and computer algebra

4. Elaborate on the modeling of sequences with the holonomic approach
(representation of sequences by recurrences and initial values)
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In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[2]:= << HarmonicSums.m

HarmonicSums by Jakob Ablinger © RISC-Linz

In[3]:= << EvaluateMultiSums.m

EvaluateMultiSums by Carsten Schneider © RISC-Linz

In[4]:= EvaluateMultiSum[
∞
∑

n=1

∞
∑

k=1

Hk(Hn+1 − 1)
kn(n + 1)(k + n) ]

Out[4]= −4ζ2 − 2ζ3 + 4ζ2ζ3 + 2ζ5
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kn(n + 1)(k + n) ]

Out[4]= −4ζ2 − 2ζ3 + 4ζ2ζ3 + 2ζ5

In[5]:= EvaluateMultiSum[
∞
∑

n=1

∞
∑

k=1

H2
k
(Hn+1 − 1)2

k (k + n)n ]

Out[5]= −10ζ3 + ζ
2

2

( 58ζ3
5
−
29

5

)
− 10ζ5 + ζ2(−ζ3 + 13ζ5 − 4) +

457ζ7
8
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In[5]:= EvaluateMultiSum[
∞
∑

n=1

∞
∑

k=1

Hk(Hn+1 − 1)
k (k + n)2n2

]

Out[5]= 2ζ3 + ζ
2

2

( 17ζ3
10
+
17

10

)
+ ζ2(2ζ3 − 3ζ5 − 4) −

9ζ5
2
+
3ζ7
16
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In[5]:= EvaluateMultiSum[
∞
∑

n=1

∞
∑

k=1

∞
∑

l=1

HkHnHn+l+k

k (k + n) (k + n + l + 1)2
]

Out[5]= 3ζ2
3
−
15ζ5
2
+ ζ2(9ζ5 − 6ζ3) +

149ζ7
16

+
114

35
ζ3
2
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Applications:

� analysis of algorithms (QuickSort, AVL trees, ...)

� combinatorial problems

� number theory

� numerics

� statistics

� special functions

� complex analysis
...

� particle physics
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Application: Evaluation of Feynman integrals

Behavior of particles

∫
Φ(N, ε, x)dx

Feynman integrals

LHC at CERN

∑
f (N, ε, k)

complicated
multi-sums
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Feynman integrals

a 3-loop massive ladder diagram
[arXiv:1509.08324]

N−3∑
j=0

j∑
k=0

(
N − 1
j + 2

) (
j + 1
k + 1

)
| |

×
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∫ 1

0

∫ 1

0

θ(1 − x5 − x6)(1 − x2)(1 − x4)x−ε2

(1 − x2)−ε xε/2−14 (1 − x4)ε/2−1xε−15 x−ep/26[
[−x3(1 − x4) − x4(1 − x5 − x6 + x5x1 + x6x3)]k

+ [x3(1 − x4) − (1 − x4)(1 − x5 − x6 + x5x1 + x6x3)]k
]

× (1 − x5 − x6 + x5x1 + x6x3)j−k(1 − x2)N−3−j

× [x1 − (1 − x5 − x6) − x5x1 − x6x3]N−3−j dx1dx2dx3dx4dx5dx6
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= F−3(N)ε−3 + F−2(N)ε−2 + F−1(N)ε−1 + F0(N)

Simplify | |

N−3∑
j=0

j∑
k=0

k∑
l=0

−j+N−3∑
q=0

−l+N−q−3∑
s=1

−l+N−q−s−3∑
r=0

(−1)−j+k−l+N−q−3×

×
( j+1k+1)(

k
l )(

N−1
j+2 )(

− j+N−3
q )(

−l+N−q−3
s ) (−l+N−q−s−3r )r!(−l+N−q−r−s−3)!(s−1)!

(−l+N−q−2)!(−j+N−1)(N−q−r−s−2)(q+s+1)[
4H−j+N−1 − 4H−j+N−2 − 2Hk − (H−l+N−q−2 + H−l+N−q−r−s−3 − 2Hr+s)

+ 2Hs−1 − 2Hr+s

]
+ 3 further 6–fold sums
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Application: Evaluation of Feynman integrals

Behavior of particles

//
∫
Φ(N, ε, x)dx

Feynman integrals
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1. Introduction

2. Symbolic Summation and the Modeling of Sequences

3. Logical Models of Problems and Computations

4. Modeling Problems in Geometry and Discrete Mathematics

Problem 1: How to get from A to B?

Problem 2: How to efficiently use resources?

5. Organization
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Example: A Robotic System

An grid in which multiple robots move around.

� System: each robot moves one cell in a selected direction.
� Safety: the robots shall not collide with the walls or with each other.

Our task is to model an adequate control software for each robot: given the current
situation of the system, compute a safe direction for the movement of the robot.
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A Model of the System

A hybrid logical/operational system description.

shared system Robots

{

var x: Positions; var y: Positions;

invariant noCollision(x, y);

init(x0:Positions, y0:Positions) with initialState(x0, y0);

{

x := x0; y := y0;

}

action move(r:Robot, d:Direction) with nextDir(x, y, r, d);

{

x := moveX(x, r, d); y := moveY(y, r, d);

}

}

Control software is specified (implicitly defined) by predicate nextDir(). 26/46



Auxiliary Definitions

val R: �; // number of robots

val P: �; // number of positions

axiom notzero ⇔ R ≥ 1 ∧ P ≥ 1;

type Robot = �[R-1];

type Position = �[P-1];

type Positions = Array[R,Position];

type Direction = �[4];

val Stop = 0; val Left = 1; val Right = 2; val Up = 3; val Down = 4;

pred noCollision(x:Positions, y:Positions) ⇔

∀r1:Robot, r2:Robot with r1 < r2. x[r1] , x[r2] ∨ y[r1] , y[r2];

fun moveX(x:Positions, r:Robot, d: Direction): Positions =

if d = Left then x with [r] = x[r]-1 else

if d = Right then x with [r] = x[r]+1 else x;

fun moveY(y:Positions, r:Robot, d: Direction):Positions =

if d = Up then y with [r] = y[r]-1 else

if d = Down then y with [r] = y[r]+1 else y; 27/46



The Control Software

// an initial state of the system

pred initialState(x: Positions, y:Positions) ⇔ noCollision(x, y);

// any robot different from r may move to position xr, yr

pred anyOtherAt(x:Positions, y:Positions, r:Robot, xr:Position, yr:Position) ⇔

∃r0: Robot with r0 , r. xr = x[r0] ∧ yr = y[r0];

// the relation between the current system state and the new direction d of robot r

pred nextDir(x:Positions, y:Positions, r:Robot, d:Direction) ⇔

(d = Left ⇒ x[r] > 0 ∧ ¬anyOtherAt(x, y, r, x[r]-1, y[r]))

∧ (d = Right ⇒ x[r] < P-1 ∧ ¬anyOtherAt(x, y, r, x[r]+1, y[r]))

∧ (d = Up ⇒ y[r] > 0 ∧ ¬anyOtherAt(x, y, r, x[r], y[r]-1))

∧ (d = Down ⇒ y[r] < P-1 ∧ ¬anyOtherAt(x, y, r, x[r], y[r]+1));

The robot may move within the grid to any unoccupied position.
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Verifying the Safety of the System

Using R=3.

Using P=5.

Executing system Robots.

13699 system states visited...

13800 system states found with search depth 13062.

Execution completed (3170 ms).

Checking the safety of all reachable states of the systems.
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Verification Conditions

Alternative: checking the validity of verification conditions.

theorem _Robots_6_initPre_cverify_0(x:Positions, y:Positions)

⇔ ∀x0:Map[�[0,2],�[0,4]], y0:Map[�[0,2],�[0,4]].

(initialState(x0,y0) ⇒ (let x = x0 in (let y = y0 in noCollision(x,y))));

theorem _Robots_6_actionPre_0_cverify_0(x:Positions, y:Positions)

requires noCollision(x, y);

⇔ ∀r:�[0,2], d:�[0,4]. (nextDir(x,y,r,d) ⇒

(let x = moveX(x,r,d) in (let y = moveY(y,r,d) in noCollision(x,y))));

The SMT solver Yices started execution.

Theorem is valid (5 ms, translation: 1 ms, decision: 2 ms).

The SMT solver Yices started execution.

Theorem is valid (36 ms, translation: 5 ms, decision: 27 ms).

By formally proving such conditions, we can also verify infinite state systems.
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A Purely Logical Model of the System

pred nextState(x:Positions, y:Positions, x0:Positions, y0:Positions) ⇔

∃r:Robot, d:Direction with nextDir(x, y, r, d).

x0 = moveX(x, r, d) ∧ y0 = moveY(y, r, d);

shared system RobotsLogical

{

var x: Positions; var y: Positions;

invariant noCollision(x, y);

init() ⇔ initialState(x0, y0);

action move() ⇔ nextState(x, y, x0, y0);

}

theorem _RobotsLogical_8_initPre_pverify_0(x:Positions, y:Positions)

⇔ ∀x0:Map[�[0,2],�[0,4]], y0:Map[�[0,2],�[0,4]]. (initialState(x0, y0) ⇒

(letpar x = x0, y = y0 in noCollision(x, y)));

theorem _RobotsLogical_8_actionPre_0_pverify_0(x:Positions, y:Positions)

requires noCollision(x, y);

⇔ ∀x0:Map[�[0,2],�[0,4]], y0:Map[�[0,2],�[0,4]].

(nextState(x, y, x0, y0) ⇒ (letpar x = x0, y = y0 in noCollision(x, y)));

The system is also uniquely described by an initial state condition and a state
transition relation.
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Course Contents

Formulating logical formulas that characterize computational problems/systems.

� Logical specification of computational problems.
� Pre- and post-conditions.
� Validation of specifications according to various criteria.
� Computation of results by evaluation of logical formulas.

� Logical modeling of computational systems.
� Initial state conditions, transition relations.
� Modeling safety properties respectively goal states.
� Computation of results by state space traversal.

Software: the “mathematical model checker” RISCAL.
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RISCAL: RISC Algorithm Language

A language and checker for mathematical models and algorithms.
33/46



1. Introduction

2. Symbolic Summation and the Modeling of Sequences

3. Logical Models of Problems and Computations

4. Modeling Problems in Geometry and Discrete Mathematics

Problem 1: How to get from A to B?

Problem 2: How to efficiently use resources?

5. Organization
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MODELING PROBLEMS IN GEOMETRY
AND DISCRETE MATHEMATICS

PROBLEM 1: HOW TO GET FROM A TO B?



Navigation Systems (trivial approach)

What is the mathematics behind navigation systems in modern cars?

Given: start address A, destination address B.

Find: “shortest route” from A to B.

Real world: A and B are given by geographical coordinates (2D or even 3D).

Solution: if no further restrictions are given, the solution is trivial: the shortest
connection from A to B is the straight line from A to B, the “shortest route” is given
by (A,B) with length

dmin = ‖B − A‖

with some appropriate norm ‖.‖.
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Navigation Systems (realistic approach)

Given: start address A, destination address B, “network” of streets S.
Find: “shortest route” from A to B on S.
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Navigation Systems (realistic approach)

Given: start address A, destination address B, “network” of streets S.

Find: “shortest route” from A to B on S.

Mathematical model: Given n Streets Si with i = 1, . . . ,n. Streets Si and Sj intersect
at crossing Ci j . Two crossings c and d are adjacent iff c , d and there is no
crossing between them on the same street. Two adjacent crossings are connected
by a street segment.

Network of streets is characterized by

� crossings V = {Ci j | i, j = 1, . . . ,n},

� adjacency relation between crossings E = {{v1, v2} | v1 and v2 are adjacent},

� length of street segments w : E → R+.
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Undirected Weighted Graphs

The triple G = (V,E,w) is called an undirected weighted graph iff

� V is some non-empty finite set,
� E ⊂ P(V) with |e| = 2 for all e ∈ E, and
� w : E → R.

Our problem now becomes

Given: an undirected weighted graph G = (V,E,w), A,B ∈ V .
Find: a sequence P of some length n in V such that

P1 = A,Pn = B

∀1 ≤ i ≤ n − 1 : {Pi,Pi+1} ∈ E
n∑
i=1

w({Pi,Pi+1}) = min{w(Q) | Q is a path from A to B in G}

38/46



Undirected Weighted Graphs

The triple G = (V,E,w) is called an undirected weighted graph iff

� V is some non-empty finite set,
� E ⊂ P(V) with |e| = 2 for all e ∈ E, and
� w : E → R.

Our problem now becomes

Given: an undirected weighted graph G = (V,E,w), A,B ∈ V .
Find: a sequence P of some length n in V such that

P1 = A,Pn = B

∀1 ≤ i ≤ n − 1 : {Pi,Pi+1} ∈ E
n∑
i=1

w({Pi,Pi+1}) = min{w(Q) | Q is a path from A to B in G}

38/46



Solution

The above problem is a well-known and well-studied problem in graph theory
called the Shortest Path Problem.

There are several algorithms to solve the Shortest Path Problem, e.g. Dijkstra’s
Algorithm or the Bellman-Ford-Algorithm.
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MODELING PROBLEMS IN GEOMETRY
AND DISCRETE MATHEMATICS

PROBLEM 2: HOW TO EFFICIENTLY USE RESOURCES?



A Planning Problem

Real Life Situation
A factory has 10 production stations with equal capabilities. Each machine can
be operated for at most 9 hours per day, production may start at 8:30. Every sta-
tion needs two workers for operation, if a station stays closed the two employees
can be used for other useful tasks. There are 160 orders with different produc-
tion duration that have to be processed on a certain day. Each order can be
processed on any of the stations. The delivery of the final products is scheduled
on the night train leaving the factory no earlier than 18:00. Time for packing the
products on the train is less than half an hour.

Design a “good” production schedule for that day.
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Problem Analysis

� Every station can be utilized for the whole 9 hours from 8:30–17:30.

� Production order does not play a role.

� Every order has to be processed.

� There is no need to finish production as early as possible, finishing by 17:30 is
all that is required so that the train is readily packed by 18:00.

� Fast production is not the criterion for a “good” production schedule, but the
number of open production stations.
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Mathematical Model

Given: orders O = {1, . . . ,n}, duration d : O → R, stations S = {1, . . . ,m},
maximal operation time on stations D : S → R.

Find: number of open stations k and assignment of orders to stations
s : O → {1, . . . , k} such that

k ≤ m, (1)

∀ j ∈ S :
∑
i∈O
s(i)=j

d(i) ≤ D( j), (2)

∀l < k�t : O → {1, . . . , l}∀ j ∈ S :
∑
i∈O
t(i)=j

d(i) ≤ D( j) (3)

(2) means assignment obeys limit on every station.
(3) means that no assignment with less stations is possible.
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Solution

The above problem is a well-known and well-studied problem in combinatorial
optimization called the Bin Packing Problem.

There are several algorithms to solve the Bin Packing Problem, e.g.
Branch-and-Bound or various Heuristic Approximation Methods, because finding
the minimal k can be very time consuming.
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Organization

� This course (VO)
� Grading based on three home assignments (3×100 grade points).
� Each assignment deals with the elaboration of a small model.
� Minimum requirement to pass the course: 3×50 grade points.
� Extra exam: only if the minimum requirements are not met.

� Accompanying proseminar (PS)
� Deals with the kind of models treated in this course.
� Additionally discusses the basics of “mathematical practice”.
� Each participant selects an individual problem to be modeled/analyzed.
� Requirement is to write a small paper and prepare/give a small presentation.
� Some topics are also suitable for a bachelor thesis.

This course and the proseminar are not formally linked: they can be independently
pursued and are independently graded.
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Moodle Course

Central point of electronic interaction.

� Forum “Discussions”: your questions and answers.
� Anyone can post a question or an answer.

� Forum “Announcements”: our messages.
� Only we (the lecturers) can post here.

� Various “Assignments”: your submissions.
� Email submissions are not accepted.

� Personal messages/emails: only for confidential matters.
� Everything else all lecturers and students should see.

See the link in the KUSSS page of this course.
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