
Definition: a QD is a system which confines the motion of charge carriers in all 

directions and in a region of space which is small enough to render quantization  

effects apparent 

Introduction - Semiconductor quantum dots 

Different size emit light at different energy (wavelength). Here 

sizes range from 2 to 6 nm. 

CdSe nanocrystal 

LMU-München 
Univ. Manchester 

Transmission electron 

microscopy (TEM) image 
Example: CdSe nanocrystals (or colloidal QDs) in 

solution - fluorescence image 

 Same material, different sizes  different color! 
This doesn’t happen at the macroscopic scale… just imagine breaking a piece of Silicon in tiny pieces… 



Fluorescence imaging and spectroscopy: simplest method to access energy levels of 

atoms, molecules, quantum dots… 

Note: Photoluminescence 

Energy of emitted light related to energy levels of the system. Note that not all levels 

are necessarily associated to bright optical transitions  only some levels contribute to 

the emission. 

0 - Ground state 

Energy 

E1 - 1st excited state 

continuum 

2nd excited state 

Initial configuration (e.g. 

electron in ground state) 

Energy 

Optically excited state 

(e.g. via a laser or UV 

lamp) 

Energy 

Relaxation followed by 

luminescence at energy E1 



Quantum dots have discrete states as atoms  “artificial atoms” 

They don’t move around  easier to study and integrate into optoelectronic devices 



When can a region of space be considered a QD? 
We must solve the Schrödinger equation for a QD potential and impose the condition 

that “quantization effects are apparent” 

Simplest approximation:  

1.1 The infinite quantum box  

infinitely deep barriers  wavefunction  = 0 outside it  

Because of geometry we choose cartesian coordinates.  
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Potential can be decomposed as the sum of potentials which depend separately 

on x,y,z  this allows separation of variables! 
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The problem is reduced to 1D. We can try solutions of the form: 
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A and k can be obtained by: 

 

1. Substituting into Schrödinger equation 

 

2. Imposing that the wavefunction is continuous at 

the edges of the box  

 

3. Imposing the normalization  

       condition 
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Solution: 

 

 

 

 

The infinite quantum box 

Notes: 

- Energy increases with the number of nodes in wavefunction 

- Energy scales with the inverse of m  smaller mass makes quantization effects stronger 

- The ground-state energy E0 is dominated by the shortest side length  it is enough to have 

one dimension „small enough“ to see size effects… but this is not sufficient to have a QD 

- The position of the first excited state E1 relative to E0  depends on the longest side 
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Quantum numbers 

describing the state 
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The infinite quantum box 

We can ask that :  

 

 

 

 

When can a region of space be considered a QD? 
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1) implies that the ground state energy is larger than the „thermal energy“. The system 

behaves differently from a „bulk“ box at the temperature T. But: a very flat box or a long 

wire could satisfy this condition as well. 

2) implies that all dimensions are „small enough“. If a particle is put in the ground state, it 

will stay there with high probability (the thermal energy is barely sufficient to promote it 

to the first excited state). 

 

 

 

 



The infinite quantum box 

We can ask that :  

 

 

 

 

When can a region of space be considered a QD? 
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2) implies that all dimensions are „small enough“. If a particle is put in the ground state, it 

will stay there with high probability (the thermal energy is barely sufficient to promote it 

to the first excited state). 
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Whether a system can be considered a QD or not depends also on temperature! 

Another condition to define a QD is that the sizes are comparable or smaller than de Broglie 

wavelength dB associated to the particle at a certain temperature T: 

 

Similar conclusion as above (a factor of 2 smaller) 

 



The infinite quantum box 

Let‘s put numbers: 

 

 

 

 

When can a region of space be considered a QD? 
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If we would be able to confine an electron in vacuum, the box should be smaller than about 5 

nm. In a semiconductor we can approximate electrons and holes as free carriers with an 

effective mass m, which is usually smaller than m0 (<1).  

 The QD must have sizes of some nanometer! Nanostructures are required to „see“ quantum 

effects (at least at room temperature). 

 

 

At room temperature 

 

 

 

 

1.1.1 The colors of CdSe dots - exercise 

Let us take now a small cube of CdSe.  The energy bandgap of CdSe is Eg=1.714 eV. For 

electrons e=0.13, for holes h=0.45. What are the colors of “nanocubes” with 3, 6 and 10 

nm side length? 

... 



The colors of CdSe dots - exercise 
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Real quantum boxes are far from the idealized case of infinite depth 

For electrons in GaAs-AlGaAs systems, we usually V0 ~ 300 meV 

We stay in 1D and we are interested  

in bound state only (E< V0 ) 

 

 

 

 

 

Square well of finite depth 
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Square well of finite depth 

Region 2 and 3 
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We have to impose the boundary conditions ... but let‘s simplify the problem first 

 

 

 

 

 

1) for                       the wavefunction should not explode  

 

 

 

 

 

x 0 IF

1) Since V(x) is simmetric, only simetric and anti-simmetric solutions can exist  

 

 

 

 

 

1) For simmetry, we can just study the problem for x >0  

 

 

 

 

 



Square well of finite depth 

… in this way 
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If we now impose the boundary conditions 

 

1.Continuity of the wavefunction 

 

 

2.Continuity of the first derivative 

 

 

3.By dividing the two 
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Square well of finite depth 

We finally have… 
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See Graphical solution... 

A one dimensional quantum well 

has always at least one bound state 
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Square well of finite depth 

Some useful remarks… 

 

1) For a shallow quantum well 

  

 

BINDING ENERGY:          

 

 

2) We should consider that the well and the barriers are made of different materials 

We would need to repeat the same calculations but 

- In regions 1-2-3 we have to use the correct mass 

- For the boundary condition we must use 

     (we have to conserve the current) 
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 ….the first convincing evidence of quantum confinement (QW) 

R. Dingle et al. PRL 33 827 (1974) 

 

Conduction and valence band  

offset not known at that time... 

 

The transmission spectrum reflects  

the density of states of the system 

 

 

Peaks correspond to excitons... Later 

 

  

Vertical transitions with Δn=0 !!! 

                     Why?? 



Flat Quantum Dots 

From Wasilewski, J. Cr. 

Growth, 201, 1131 (1999) 

Cross-sectional TEM 

images of InGaAs QDs in 

GaAs. Depending on 

imaging conditions InAs 

appears darker or brighther 

than matrix. 

20 nm  

E. Müller (ETH Zürich), A. Rastelli, O.G. 

Schmidt (MPI Stuttgart) 

 Flat QDs 



During the lecture we have studied the problem of a flat QD. Here, I summarize the 

important steps and the equations we have derived. 

Flat Quantum Dots 

In this conditions, the kinetic energy is dominated by the motion along z. In other words we can try to 

separate the vertical and lateral motion. (This is similar to the Born-Oppenheimer approximation for 

molecules): 
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Inside the dot: 

 The vertical (along z) confinement acts as potential for the lateral (in x,y) motion 
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We consider only the ground state 

for the vertical motion (nz=1) 

Basic approxiamtion (1) 



Flat quantum dots 

x 

z 

),(2
),(

2

22

yxmL
yxV

z

xy




For not too irregular shape we can expand Vxy 

around x,y=0 (higherst point of the dot). 

... 

 

h 

 

w 

 

h<<w 

 

x 

E 

2

22

2mh



 

0,

2

2

2222

2

22

2

0

2

2
2

0

2

2

2

22

1

2

1

2

11
1

2
),(


































yx

z
a

yx

zz
xy

a

L

hmh

yxm
mh

y
y

L

h
x

x

L

hmh
yxV















This is a 2-dimensional harmonic oscillator potential plus an offset associated to z.  

The „angular frequencies“ increase when: 

- the curvature (sharpness) of the dot increases 

- the height of the dot decreases 

- the particle mass decreases     
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Flat quantum dots 
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Flat quantum dots 
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1.2 Flat quantum dots 

If we now assume that the dot is symmetric in x and y directions  
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- For dots with small aspect ratio, the main contribution to the ground-state energy comes 

from the vertical confinement 

- The spacing between excited states is constant and equal to          which is inversely 

proportional on h w  the wider or taller the dot is, the closer the levels  

- The degeneracy of excited states is N+1 and increases with energy  



The level spacing is: 
][

67722
2

2

nmhw

meV

mhw
E










Experimental examples (QDs) 

From S. Raymond, Phys. Rev. B 59, 

7624 (1999) 

E0 

E1 
E2 

• Photoluminescence (fluorescence) spectroscopy 

allows easy access to confined states  

• Spectra of ensemble of InAs/GaAs QDs are 

«inhomogeneously» broadened 

• Smaller dots show higher emission energy 

• Smaller dots show larger level spacing 

• Excited states become visible at high excitation 

power (level filling) 

• When level separation is ~2 kBT, first excited 

state is populated also at low excitation power 

• At high excitation power, interaction between 

carriers produce slight red-shifts of emission 



Example of qualitative 

correlation between structural 

properties (from AFM) and 

optical properties. Smaller 

dots have both higher 

emission energy and larger 

level splitting 

Songmuang et al, J. Cryst. Growth 251, 166 (2003) 

E0 

E1 

This is somewhat larger than the size seen 

in TEM. The most likely reason is the fact 

that we assumed infinitely deep barriers 

Experimental examples (QDs) 
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By using: 

 

 

 µ~0.059, which is higher than 

what expected for InAs (0.021) 

and GaAs (0.056) 

Data by F. Ding et al, Appl. Phys. Lett. 90, 173104 (2007) 

Experimental examples (reminder + some more detail) 

The larger dots in the previous slide 

emit at 1.3 µm wavelength and have 

level splitting of about 50 meV. 

 

 

The size of the dots is shown on the 

left: h~7.6 nm, w~30 nm, aspect 

ratio r=h/w~0.25 

This discrepancy is in part due 

to the assumption of infinitely 

deep barriers 
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What are the maximum size fluctuations for flat dots to see well resolved excited states? 

Often dots in an ensemble have similar aspect ratio r. Assume it constant (0.25).  
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Exercise (solved during the lecture) 
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Different QDs emits at 

different energies!!! 

„Avarage“ information 

can be obtained 

Inhomogeneous broadening 



We have seen how a PL spectrum from 

ensemble of QDs looks like and we have seen 

how to derive some useful information on their 

structural properties.  

 

 

QD ensemble 

Now, let´s focus on single QDs…  

 

 



AFM images 22 m2 

of InAs/GaAs QDs 

To address single quantum dots with far field optics: 

1) If dot density is high (such that interdot distance << laser beam size)  opaque 

apertures 

 

 

 

 

 

 

 

 

 

2) If dot density is less than ~108 cm-2 focusing down to diffraction limit is sufficient 

Single dots addressed by 

random search (most 

commonly used method 

still nowadays!) 



Typical experimental apparatus for 

standard PL measurements 

Let’s have a look at the fundamental ingredients… 



We need high spatial resolution to address the single QDs 

Diffraction limit: 

Numerical  

Aperture 



sinN.A.

)sin2/(

n

nd





Common objectives N.A. ~ 0.5 

For       = 800 nm, d = 800 nm 

Objective used for both excitation and PL collection 



Typical PL spectrum of a single InAs QD at low excitation power and low temperature 

Let’s consider only the ground 

state (low excitation power, we 

populate only the s-shell)… we 

do not have just one peak as 

assumed before!!!! 

InAs QD in GaAs 

PRB 79, 165427 (09) 



Excitons in quantum dots 

- no ”free” electronhole- pairs exist due to the QD confinement. The fundamental excitation is 

the exciton itself and we refer to this transition for the binding energies. 

- the Coulomb interaction is enhanced with respect to the bulk case due to the close 

proximity and compression of electron and hole wave functions. Calculation predicts 

binding energies of the order of 20 meV 

- the Coulomb interaction competes with the confinement energy, which is a ~10 times larger 

The few particle characteristics are governed by the confinement potential… This leads to 

interesting consequences like the presence of “anti-binding” complexes, which in bulk would 

immediately dissociate into their components 

PRB 68, 073309 (2003) 



Few particle states in a single QD 

We are sensitive (in PL) only to 

transitions 

 

The energetic position of the lines 

depends on the specific structure 

of the QDs 

We are sensitive (in PL) only to 

transitions !!!! 



As discussed, we need to consider quantization and coulomb interactions. If we focus 

only on the direct Coulomb term: 
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But we can access 

only transition 

energies… 
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Single particle 

energies… 



If we now refer to the fundamental excitation, we can define binding energies as 
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Please note 

The question of whether the binding energy is positive or negative is a  question of the 

magnitude of the attractive and repulsive Coulomb interaction terms. In turn, this depends 

on the QD structural details.  

 

For InAs QDs a general rule exists: 

 

Here holes are more localized than electrons and the center of mass of the two carriers are 

usually close. 
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However, experimental results reveal binding and anit-binding excitons… this cannot be 

explained taking into account direct Couloumb interactions only and more sophisticated 

models are needed. I fact 

 

 

- We have disregarded, that the presence of additional charge carriers alters their 

wave functions, thus influencing the original Coulomb interaction terms. 

 

-We have disregarded correlation effects. The ground state of the many-particle wave 

functions is then composed not only of the single-particle ground states but also has non-

zero components in the single-particle excited states. (This includes the fact that electrons 

and holes rearrange to minimize Coulomb interaction + wave functions deforms in the 

presence of an additional charge carrier) 

 

-We have disregarded the exchange interaction.  
1221
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ALL THESE TERMS DEPEND STRONGLY ON THE QD STRUCTURAL DETAILS 

Only considering all these effects the “anti-binding biexciton” can be explained 




