Introduction - Semiconductor quantum dots

Definition: a QD is a system which confines the motion of charge carriers in all
directions and in a region of space which is small enough to render quantization

effects apparent T <cion elect
: : ransmission electron
Example: CdSe nanocrystals (or colloidal QDs) in a :
: . microscopy (TEM) image
solution - fluorescence image
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Different size emit light at different energy (wavelength). Here
sizes range from 2 to 6 nm.

—> Same material, different sizes = different color!
This doesn’t happen at the macroscopic scale... just imagine breaking a piece of Silicon in tiny pieces...



Note: Photoluminescence

Fluorescence imaging and spectroscopy: simplest method to access energy levels of
atoms, molecules, quantum dots. ..
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E1 - 1stexcited state l
—@®— (0 - Ground state —O— ——
Initial configuration (e.g. Optically excited state Relaxation followed by
electron in ground state) (e.g. via a laser or UV luminescence at energy E1

lamp)

Energy of emitted light related to energy levels of the system. Note that not all levels
are necessarily associated to bright optical transitions - only some levels contribute to
the emission.



Quantum dot H-atom

Semiconductor

Quantum dots H atoms

Quantum dots have discrete states as atoms - “artificial atoms”
They don’t move around —> easier to study and integrate into optoelectronic devices



When can a region of space be considered a QD?

We must solve the Schrodinger equation for a QD potential and impose the condition
that “quantization effects are apparent™

—f—vzw(r) V(O (r) = Ew(r)
m

Simplest approximation:

1.1 The infinite quantum box 7

infinitely deep barriers = wavefunction y = 0 outside it A

Because of geometry we choose cartesian coordinates. L, y
0 Inside box /

V(X,V,2)= _ >
00 outside box L, X

Potential can be decomposed as the sum of potentials which depend separately
on X,y,z =2 this allows separation of variables!

VX,y,2) =V, (X)+V, (¥) +V,(2)

Va(a):{O 0<a<l, v (%Y. 2) =0, (v, (Y (2)

00 otherwise



The infinite quantum box

2

V,(3) ", _
a—xz,y,z_zm v (@) +V(@)=E = o wr(@)+V(a)y,(a) =E.w,(a)

E=E,+E, +E,

The problem is reduced to 1D. We can try solutions of the form:
A sink,a O<a<lL,
. (a) =

0 a<0orazlL,

A and k can be obtained by:

1.

2.

a
Substituting into Schrodinger equation —>E, =

Imposing that the wavefunction is continuousat  — k_ =
the edges of the box

Imposing the normalization J‘da\wa(a)‘ =1 > A= 1/

condition




The infinite quantum box Quantum numbers
describing the state

Solution:
o, .m, m /
w(X,y,2)=2 sin—=xsin—-ysin—*+z, n,n,n,=12,..
Xy —z I—x I—y I—z

2h2_ n Y (n) (n a3
E=" N Y

2m [\ L, L, L,
Notes: B B

- Energy increases with the number of nodes in wavefunction
- Energy scales with the inverse of m - smaller mass makes quantization effects stronger

- The ground-state energy E, is dominated by the shortest side length > it is enough to have
one dimension ,,small enough* to see size effects... but this is not sufficient to have a QD

- The position of the first excited state E, relative to E, depends on the longest side

4
htl 1 1 1 htl 4 1 1
BT EL E, = > Tt
2m | L Ly Lo 2m | L Ly L
’h*

2mL2

L, <L, <L, —>E;=

>AE=E,-E,=3



The infinite quantum box E
When can a region of space be considered a QD?
We can ask that : E fmmmmmmmmmmmmmmmme
DE, >3K,T & 2)E, —E,>3K,T =5 Aai—
7ih =
—>L, < 0
A 2MmK T

1) Implies that the ground state energy is larger than the ,,thermal energy*. The system
behaves differently from a ,,bulk® box at the temperature T. But: a very flat box or a long

wire could satisfy this condition as well.
2) implies that all dimensions are ,,small enough®. If a particle is put in the ground state, it

will stay there with high probability (the thermal energy is barely sufficient to promote it
to the first excited state).

whl 1 1 1 whtl 4 1 1
_|_
2m | L5 L L

L, <L, <L, —>E,=

2+ 2
/)

2mL2

—>E -E,=3



The infinite quantum box E
When can a region of space be considered a QD?
We can ask that : g

1)Eo>3KBT & 2)E1—E0>3KBT g, [T
7 E,

—>L, <
J2mK T 0

1) Implies that the ground state energy is larger than the ,,thermal energy*. The system
behaves differently from a ,,bulk® box at the temperature T. But: a very flat box or a long

wire could satisfy this condition as well.
2) implies that all dimensions are ,,small enough®. If a particle is put in the ground state, it

will stay there with high probability (the thermal energy is barely sufficient to promote it
to the first excited state).

—>Whether a system can be considered a QD or not depends also on temperature!
Another condition to define a QD is that the sizes are comparable or smaller than de Broglie

wavelength A, associated to the particle at a certain temperature T:

=L NemE = | Lh E~K,T
h mE

ﬂ‘dB
\/Eﬂ'h

L, <Apz— L <
JMK,T

Similar conclusion as above (a factor of 2 smaller)




The infinite quantum box
When can a region of space be considered a QD?

Let‘s put numbers:
m=a m,, m,freeelectron mass

a1l 1 1 37fémevV| 1 1 1
~ Tt T

L, L,

L < 7h 19 nm 3.8nm At room temperature

< mKT Ja K Tmev]  Ja

If we would be able to confine an electron in vacuum, the box should be smaller than about 5
nm. In a semiconductor we can approximate electrons and holes as free carriers with an
effective mass m, which is usually smaller than m, (a<1).

— The QD must have sizes of some nanometer! Nanostructures are required to ,,see* quantum
effects (at least at room temperature).

E, = +—+
A1 S S a | L

z

[nm~]

1.1.1 The colors of CdSe dots - exercise

Let us take now a small cube of CdSe. The energy bandgap of CdSe is E;=1.714 eV. For
electrons o,=0.13, for holes a,,=0.45. What are the colors of “nanocubes” with 3, 6 and 10
nm side length?



The colors of CdSe dots - exercise E

0,=0.13, for holes «,,=0.45

m=a m,, m,freeelectron mass
E o~ 1128 meV
> a L2(nm?)

Conduction band
(states are
initially empty of
electrons)

242
nh 1 1
E.n = E;+3 > + E
! Soo2mlila, a, light
) M L position
AW 0
h
~E + 1128 meV Reduced mass (in — E, Valence band
o ul (nm?) units of the free

(all states are
initially filled
with electrons)

electron mass)




Square well of finite depth

Real quantum boxes are far from the idealized case of infinite depth
For electrons in GaAs-AlGaAs systems, we usually V,~ 300 meV

We stay in 1D and we are interested
In bound state only (E< V,)

—f— W () +V (O () = E(X)
m
Region 1

v, (%) =—2;"2E v, (X) = —K2y, (%)

w,(X) = Asin(kx) + B cos(kx)

v

A
v

k =




Square well of finite depth

Region 2 and 3

00 =L _ ey () = Fe ™ + Ge™
- \/Zm(\/o _E) w,(X)=He ™ +1e”
h

We have to impose the boundary conditions ... but let‘s simplify the problem first

1) for X—*o0  the wavefunction should not explode —>F =1=0

1) Since V(x) is simmetric, only simetric and anti-simmetric solutions can exist

1) For simmetry, we can just study the problem for x >0



Square well of finite depth

... In this way
sin o
p, (X) = A{ }(kx) w;(x) = Ce
COS
If we now impose the boundary conditions
sin| kL -
1.Continuity of the wavefunction A () =Ce
cos| 2
1 al
2.Continuity of the first derivative A{_Sm}(kl-) — _Cae 2
cos | 2

3.By dividing the two tan (&)_ 2mV,
—cot| 27 \ A%?



Square well of finite depth

We finally have... 0 kL All the physical
- ? parameter of the well
tan 0, have been absorbed in
cot (0) = 7 -1 g mV, L’ one dimensionless
0= T op2 parameter
10— I I I A one dimensional quantum well

i has always at least one bound state

Gt e
Chel xz) ) 2 0 — 2 |mV, L’

S p 7 P 2
He(se) N T 7w\ 2h
He2( ze) T

See Graphical solution...




Square well of finite depth

Some useful remarks...

1) For a shallow quantum well O~ |[—--1 . &=V,

BINDING ENERGY: |B=V,—-¢=

2) We should consider that the well and the barriers are made of different materials

We would need to repeat the same calculations but

- Inregions 1-2-3 we have to use the correct mass ,

- For the boundary condition we must use v (X)
(we have to conserve the current) m,

\

tan (9): rnW QO —1 0. — mWV0L2 9:&
— cot m, \ 6° ° on? 2

N\

' (X)

x=L/2 mb

x=L/2




....the first convincing evidence of quantum confinement (QW)

Conduction band 1.50 g02As  ch e-hh
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R. Dingle et al. PRL 33 827 (1974)

Conduction and valence band
offset not known at that time...

The transmission spectrum reflects
the density of states of the system

Peaks correspond to excitons... Later

Vertical transitions with An=0 !!!
Why??



Flat Quantum Dots

Cross-sectional TEM
Images of InGaAs QDs in
GaAs. Depending on
imaging conditions InAs
appears darker or brighther
than matrix.

S1 :

WETTING LAYeR g
W

From Wasilewski, J. Cr.
Growth, 201, 1131 (1999

- Flat QDs

E. Muller (ETH Zdrich), A. Rastelli, O.G.
Schmidt (MPI Stuttgart)




Flat Quantum Dots

During the lecture we have studied the problem of a flat QD. Here, | summarize the
Important steps and the equations we have derived.

h’ 1
_%v 2w (r)+V (N (r) = Ew(r) h| Ly
V(X,Y,2)= 0 0<z<L(xYy) /7\ g
Y2) =9 otherwise ) W X

Basic approxiamtion (1) h<<w,, w,

In this conditions, the kinetic energy is dominated by the motion along z. In other words we can try to
separate the vertical and lateral motion. éThls is similar to the Born-Oppenheimer approximation for

molecules): ¥/ (X, ¥, Z) =, (X, Y)w,(2)
In5|de the dot: h A
2y (X% Y) h2 "(Z) We consider only the ground state

2m " (x y) om » (Z) — for the vertical motion (n,=1)
Xy z
hz hzﬂz
—— (X, Y)+V, (X, X, Y)=Ey,(X,y); V,(Xy)=

—> The vertical (along z) confinement acts as potential for the lateral (in x,y) motion




Flat qguantum dots

her?
V. (X, V)=
7 () 2mL: (x, y)

For not too irregular shape we can expand V,,
around Xx,y=0 (higherst point of the dot).

Z

V,, (X, y) =

hert 1 0°L
2 1-— 2
2mh h Ox

X 2
o Noy

her?
~ 2mh?

hr | 10°L,
w,=— [-———

mh\ h oa
This is a 2-dimensional harmonic oscillator potential plus an offset associated to z.
The ,,angular frequencies* increase when:

- the curvature (sharpness) of the dot increases
- the height of the dot decreases
- the particle mass decreases

+§m(a)fx2 + a)jyz)

X,y=0



Flat qguantum dots
Recalling the solution of the harmonic potential:

2_2
E(nwrw)::h ﬂ'-+(;—+nxjha&—+(;—knyjha&, n,n, =012,.

2mh?
hr 1 GZLZ
®,=— [-——
mh\ h oa )
X,y=0
Ground-state and first excited state energies ( W,<w, )
_ Wz +E(a) +m,)
o2mh? 2t Y
E =E,+ho,

Relative contribution of in-plane and vertical confinement to ground-state energy:

E,, h \/_aZLZ +\/_82LZ
E, 2|\ o), | &

z

J For flats QDs Eois mainly determined by z
0



Flat quantum dots

To explicitely see the dependence on lateral sizes we can take a lens-shaped dot, w,<w, :

4x°  4y? 2
Lz(X,Y)=h[1— —— yZ] a)a—hﬂ\/ 1oL,

wl oW " mh\ h éa’

X,y=0

Angular frequencies and dependence on size:

B 2\ 27
mhw,

Q

X

Contribution of lateral confinement to ground-state:

E, 4V2 h
E T W,

z




1.2 Flat quantum dots
If we now assume that the dot is symmetric in X and y directions @ =@, = @,

2
V,, (X, y)~ 'z +;ma) (x2+y2)
2 2 2 2
— E(n,, y)~ nr +/1+n, +n, 'z _E@_IZ_ ,  n,n,=012,..
— —>| mh h OX ‘Y0
. _
2 2 2 2 2
E(N)—h +ha)(1+|\|)—h” 20’ T(@+N), N=012,..
2mh’ mhw

- For dots with small aspect ratio, the main contribution to the ground-state energy comes

from the vertical confinement
- The spacing between excited states is constant and equal to 7i¢o which is inversely

proportional on h w = the wider or taller the dot is, the closer the levels
- The degeneracy of excited states is N+1 and increases with energy

22h? 677 meV
mhw  ahwinm?]

The level spacing is: AE ~



PL Intensity (arb. units)

FIG. 4. Evolution of the low temperature (4.2 K) emission spec-
trum as the excitation intensity 1s increased. The figure clearly re-
veals the absolute saturation of the emussion of the three lowest
states. The inset shows an example of multiple Gaussian fit to de-
convolute the emuission of each peak. The round dots are experi-
mental points, the solid line is the resulting fit, and the dashed

1.5

Experimental examples (QDs)
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curves show the four Gaussians used to fit the spectrum.

Photoluminescence (fluorescence) spectroscopy
allows easy access to confined states

Spectra of ensemble of InAs/GaAs QDs are
«inhomogeneously» broadened

Smaller dots show higher emission energy
Smaller dots show larger level spacing

Excited states become visible at high excitation
power (level filling)

When level separation is ~2 kgT, first excited
state is populated also at low excitation power

At high excitation power, interaction between
carriers produce slight red-shifts of emission

From S. Raymond, Phys. Rev. B 59,
7624 (1999)



Experimental examples (QDs)

PL Intensity (arb. u.)

0.01 ML/s -

x100

__ _0.04 ML/s { SRR

0.2 MLs

0.90 0.95 1.00 1.05 1.10 1.15 1.20
Energy (eV)

Example of qualitative
correlation between structural
properties (from AFM) and
optical properties. Smaller
dots have both higher
emission energy and larger
level splitting

272R? 677 meV
mhw  ahwinm?]

AE =~

h ~8nm
——> W~=~60nm

This is somewhat larger than the size seen
in TEM. The most likely reason is the fact
that we assumed infinitely deep barriers

Songmuang et al, J. Cryst. Growth 251, 166 (2003)

500 nm



Experimental examples (reminder + some more detail)
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FIG. 2. (Color online) Height histogram for buried In(Ga)As QDs after
removal of the GaAs cap layer. The solid line represents the Gaussian fit.
The inset shows a HAADF STEM image of a QD grown and capped with
similar conditions. The dashed line is a line scan obtained from the AFM

image shown in Fig. I(e).
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Data by F. Ding et al, Appl. Phys. Lett. 90, 173104 (2007)

The larger dots in the previous slide
emit at 1.3 um wavelength and have
level splitting of about 50 meV.

The size of the dots i1s shown on the
left: h~7.6 nm, w~30 nm, aspect
ratio r=h/w~0.25

677 meV
phw{nm’]
- U~0.059, which is higher than

~hat expected for InAs (0.021)
ind GaAs (0.056)

By using:E, —E, =

This discrepancy is in part due
to the assumption of infinitely
deep barriers



Inhomogeneous broadening

T=12K Qw

4

QD12

' |
150 W/cm?

%57\/
30

=

Different QDs emits at

PL Intensity (arb. units)

different energies!!! AL |
,,2Avarage* information 75/ L I
. 3.0 M
can be obtained SN
oas /M T~
1.30 1.35 1.40 1.45
(a) Photon energy (eV)

Exercise (solved during the lecture)

What are the maximum size fluctuations for flat dots to see well resolved excited states?
Often dots in an ensemble have similar aspect ratio r. Assume it constant (0.25).

2 _2 2 2 2
E(N) = ~  thol+N)= f ~_+ 2:2h " @+N), N=012,..
2mh 2mh mhw
2 _2
=" LE - E, + 'z : {1+4ﬁ(1+ N)r}, N =012,...
W 2mgh 7T

Solution r=0.25 - % <15%
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FIG. 4. Evolution of the low temperature (4.2 K) emission spec-
trum as the excitation intensity 1s increased. The figure clearly re-
veals the absolute saturation of the emussion of the three lowest
states. The inset shows an example of multiple Gaussian fit to de-
convolute the emuission of each peak. The round dots are experi-
mental points, the solid line is the resulting fit, and the dashed
curves show the four Gaussians used to fit the spectrum.

QD ensemble

We have seen how a PL spectrum from
ensemble of QDs looks like and we have seen
how to derive some useful information on their

structural properties.

Enemy

Now, let’s focus on single QDs...



To address single quantum dots with far field optics:
1) If dot density is high (such that interdot distance << laser beam size) - opaque
apertures

AFM images 2x2 pum?
of InAs/GaAs QDs

2) If dot density is less than ~108 cm focusing down to diffraction limit is sufficient

Single dots addressed by
random search (most
commonly used method
still nowadays!)




Typical experimental apparatus for
standard PL measurements

IMAGING |
APPARATUS meert L - |
! ]

re == = T | CONFODCAL MICROSCOPE |
: MIRROR 02 5X I
I - f— | B |
I C T ruPPING nﬁﬁ |:| n] =
| I MIRROR pmiproR POLARIZER+
ROTATING
W2 (\id) PLATE

Let’s have a look at the fundamental ingredients...



We need high spatial resolution to address the single QDs

Objective used for both excitation and PL collection

60x Plan Apochromat Objective

Common Objective Optical Correction Factors ’ Nosepiece
10x Achromat 10x Fluorite 10x Apochromat

Figure 2

Diffraction limit: d = /1/(2nsin 6’) - o
Numerical ]
Aperture N.A.=nsind

Common objectives N.A. ~ 0.5

For A =800nm, d=2800nm



Typical PL spectrum of a single InAs QD at low excitation power and low temperature

1 : ! ' L . InAs QD in GaAs
A “ PRB 79, 165427 (09)
. f ! dshel i H -
@ 1 4400 Wem® A T
‘é’ | e W AN J‘ el
Z X i g ] ‘ | i
= L p-shell IM [ -
sl XX 1 B | I ot
§ % 4 440 W/cm:j«w\ j“‘\ If ‘ \ \ =
2 | E | '
g 0X X+ = WL ( | X
5 a s-shell ‘ I
= - 1 sowem® | ;.J VXL
= TR e P —
AL B s I i d . . . T T t
1376 1378 1,38 1382 138 138 1,388 1200 1250 1300 1350 1400 1450
Energy (eV) Energy (meV)
X XX x* X
@) ® |4 © @ |4 .
-+ % ‘*‘ 4# Let’s consider only the ground
state (low excitation power, we

populate only the s-shell)... we
& ?& do not have just one peak as
. & v assumed before!!!!




Excitons in quantum dots

- no “free” electronhole- pairs exist due to the QD confinement. The fundamental excitation is
the exciton itself and we refer to this transition for the binding energies.

- the Coulomb interaction is enhanced with respect to the bulk case due to the close

proximity and compression of electron and hole wave functions. Calculation predicts
binding energies of the order of 20 meV

- the Coulomb interaction competes with the confinement energy, which is a ~10 times larger

h FIG. 4. (Color online) Upper
0 panel (a) Isosurfaces enclosing 75

a) €, € €,
and 40 % of the state densities of
the first three electron and the first
\ - hole states for an In; 4Gay 4As dot.
5 Q S : Lower panels: Isosurfaces of the

state density differences pag=p,

94 % S character 92 % P character 92 % P character 90 % S character —pj, for a pure InAs dot (b) and
for an IngsGagsAs dot (c). The

b) C) electrons, compared to the holes,
are more localized toward the top

é and base of the dots. All dots are
lens shaped (b=25nm. &

=35 nm).
PRB 68, 073309 (2003)

The few particle characteristics are governed by the confinement potential... This leads to
interesting consequences like the presence of “anti-binding” complexes, which in bulk would
iImmediately dissociate into their components



Few particle states in a single QD

X-

(a) _¢_ (b) % (c) +

(d) %

We are sensitive (in PL) only to
transitions

The energetic position of the lines
depends on the specific structure
of the QDs

a)

lectro

N
E20N

' X

h-¥oles

X

e )C

We are sensitive (in PL) only to
transitions !!!




As discussed, we need to consider quantization and coulomb interactions. If we focus
only on the direct Coulomb term:

Exciton Biexciton
dr.dr, © © & ©
o el X ]
® @O

e

J:4; ‘qji(rl)‘quj(rz)z
| ko

Are &, r—r,

Directo Couloumb term

E(X)=[e(e)—e(h)]+C,,
E(XX) =[2&(e) - 2¢(h)]+ 4C,, + C,, +C,, __ Single partice
E(X")=[2e(e)-e(h)]+2C,, +C,, g(i)  energies..
E(X") =[e(e)-2¢(h)]+2C,, +C,,
ho, (X = 0)=E(X)
only transition Mo (XX = X)=E(XX) - E(X)
energies... ho, (X~ —>e)=E(X")-&(e)
ho,. (X" —h)=E(X")-s(h)

v



If we now refer to the fundamental excitation, we can define binding energies as

Abind(xx) — ha)x _ha)xx — ZE(X) _ E(XX) — _2Ceh _Cee _Chh
Abind(x+) =-C,, —Cy; Ce..Ci, >0

Please note ee’

Abind(>< _) — _Ceh _Cee Ceh <0

The question of whether the binding energy is positive or negative is a question of the
magnitude of the attractive and repulsive Coulomb interaction terms. In turn, this depends
on the QD structural details.

For InAs QDs a general rule exists: C. < ‘Ceh‘ <C,,

Here holes are more localized than electrons and the center of mass of the two carriers are
usually close.

binding regime anti-binding regime

A
v

Aping(X7) > Aping (XX)
Aping (XX) < Aying(X7)

AX X X+

T 1 S

Energy

Intensity




However, experimental results reveal binding and anit-binding excitons... this cannot be
explained taking into account direct Couloumb interactions only and more sophisticated
models are needed. | fact

- We have disregarded, that the presence of additional charge carriers alters their
wave functions, thus influencing the original Coulomb interaction terms.

-We have disregarded correlation effects. The ground state of the many-particle wave
functions is then composed not only of the single-particle ground states but also has non-
zero components in the single-particle excited states. (This includes the fact that electrons
and holes rearrange to minimize Coulomb interaction + wave functions deforms in the
presence of an additional charge carrier)

-We have disregarded the exchange interaction. <\Pa1\Pb2‘ H ‘\Paz P, >

coul

ALL THESE TERMS DEPEND STRONGLY ON THE QD STRUCTURAL DETAILS
Only considering all these effects the “anti-binding biexciton” can be explained





