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Chapter 1

Introduction

1.1 About This Manual

The following scriptum is intended as a manual to perform an x-ray diffraction experiment

in the course of the ”Fortgeschrittenenpraktikum”. It tries to give first some motivation

on the investigated samples. Then some theory is included, describing the scattering of

x-rays by matter.

Thereafter the experimental setup is explained in detail. The measurements can most easily

be interpreted by plotting them in the coordinate system of reciprocal space, therefore a

large part of this section is concerned with reciprocal space coordinates. In order to give

sort of a ”complete” picture of the method, also some aspects that are not absolutely

required in order to perform this course have been included.

In the next section, the alignment of a sample is explained, first more generally, and then

step-by-step for the specific x-ray diffractometer which will be used. Again, although for

this course not all steps of alignment are really required (it is, however, instructive to do

a full alignment), the complete alignment procedure for a sample in the so-called coplanar

scattering geometry is explained.

Finally, the actual problem of this course is presented in Sec. 4. The appendix contains

some further details concerning the scattering theory, as well as some tables of numbers

useful for the interpretation of the results, and some graphs required for the same purpose.

1.2 Motivation

In recent years the fabrication of fast electronic devices by means of heterostructures

grown by several techniques like molecular beam epitaxy (MBE), chemical vapor depo-

sition (CVD) or liquid phase epitaxy (LPE) has been developed to a considerable high

1



2 CHAPTER 1. INTRODUCTION

standard, in particular with the GaAs/AlGaAs system [1]. Great efforts have been made

to transfer this technique to silicon based devices. There are two possible group–IV mate-

rials for the formation of heterostructures with silicon: Germanium, which has a bandgap

smaller than silicon, and carbon (diamond), which exhibits a band gap approximately five

times that of silicon [2]. For the lattice parameters see the following table [2]:

Element Atomic No. Lattice const. (Å)

C 6 3.567

Si 14 5.431

Ge 32 5.657

Germanium was the first group–IV material introduced on purpose to the silicon system

to fabricate heterostructures. It is miscible with silicon in any concentration, and therefore

SiGe layers are rather easy to fabricate with conventional techniques. If a SiGe epitaxial

film with a certain Ge concentration is grown on top of a Si substrate, it will imitate the

lateral structure of the substrate up to a certain ”critical thickness” of the layer [3], known

as pseudomorphic growth. As a consequence of the lattice mismatch between Si and Ge

(dependent on the Ge concentration of the layer) the layer will be tetragonally distorted,

i.e. the lateral lattice constant will be smaller than the lattice constant in growth direction,

the film is under biaxial compressive strain. For this strain state the degeneracy of the six

conduction band valleys in k–space along Γ–X direction [4] vanishes, and the resulting

band alignment is indicated in Fig.1.1a [5], [6].

Figure 1.1: Illustration of the band offsets in a Si/SiGe heterostructure for different strain

states.

If the structure is again overgrown with silicon, the SiGe layer forms a quantum well

for holes, but no confinement for electrons in the conduction band is achieved. Such a

layer system can be exploited technically e.g. for the construction of fast devices (as the

hetero–bipolar transistor [HBT]) [7], [8], [9]. To obtain the proper band offset within the

conduction band for a quantum well for electrons, as would be needed if something similar

to CMOS devices are aimed, a biaxially tensile strained layer has to be grown rather than
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a biaxially compressive strained one [5]. Possible ways to obtain such a layer is the growth

of a SiGe layer on top of a Ge substrate or of a Si layer on top of a relaxed SiGe buffer

layer, as indicated in Fig.1.1b (note that there exists still a valence band offset, making

a simultaneous confinement of holes in the SiGe layer and of electrons in the Si layer

possible).

Another way to fabricate quantum wells for electrons was developed recently (e.g. in [10],

[11], [12]). The incorporation of carbon, which has a lattice constant approximately 50%

smaller than that of silicon, in the Si lattice yields a similar strain status than for Si on

SiGe, i.e. C containing layers on Si substrates exhibit a biaxial tensile strain. However,

the incorporation of C in Si cannot be obtained by growth methods operating in the

vicinity of thermodynamical equilibrium, as the bulk solubility limit for C in Si is as

low as 3.5 · 1017cm−3 (for oxygen–free silicon at the melting point; for oxygen–saturated

Czochralski–grown Si values of up to 2 ·1018cm−3 have been obtained, for details see [13]).

Nevertheless carbon can be incorporated to a significantly higher amount into the silicon

lattice by means of techniques like MBE and at rather low growth temperatures of about

500◦C. Although as a consequence of the high lattice mismatch between C and Si, the

local neighborhood of a carbon atom will be considerably distorted, which may have

significant influence on the electronic properties of SiC–based devices, some devices are

already available [14].
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Chapter 2

Scattering Theory Basics

This chapter contains a short overview over the scattering theory relevant for the interpre-

tation of the x–ray measurements. The descritions follow a lecture ”Theoretische Physik

II, Elektrodynamik” by U.M. Titulaer [15], and a book of M.A. Krivoglaz [16].

2.1 Light Scattering by a Point Charge

In order to understand the scattering of x-rays by a crystal, let’s start considering first a

single charged particle, and afterwards extend the consideration to an ensemble of particles

and finally to a crystal. First of all, x-rays are electromagnetic waves, so we may apply

the description found in any textbook on electrodynamics. A monochromatic, plane elec-

tromagnetic wave acting on a point charge will lead to a vibration of this charge around

its normal position, leading to a dipole moment pω = α(ω)E0
ω, with E0

ω the electric field

of the incoming wave and α(ω) the polarizability of the particle, which depends on the

frequency of the electromagnetic wave ω. This vibrating dipole, as any accelerated elec-

trical charge, emits an electromagnetic wave. We want to know the strength of this wave

in a certain direction from the vibrating charge. If we are far away from the charge, the

emitted wave is a spherical wave. Let us consider the particle in a position r = 0, then an

observer in point r with r = |r| large compared to the wavelength λ of the incoming wave

will ”see” an electric field of [15], [17]

|Eω| = −α(ω) |E0
ω|

eikr

r
, (2.1)

k = |ki| = |kf | is the length of the wave vectors of the incoming and scattered radiation

ki and kf , respectively. I.e., we consider only elastic scattering. The scattering geometry

is depicted in Fig. 2.1. Here, ki is along the x axis, while kf points towards the observer.

The following relations hold between the wavelength and the wave vector and frequency

(c denotes the speed of light):

5



6 CHAPTER 2. SCATTERING THEORY BASICS

Figure 2.1: Scattering geometry for a single particle.

k = |ki| = |kf | =
2π

λ

ω = 2π
c

λ
. (2.2)

2.2 Light Scattering by an Ensemble of Charges

If we consider an ensemble of identical light scatterers located at positions {rj}, and neglect

the possibility of multiple scattering as well as the weakening of the incoming wave and

the effect of the scattered wave on the scattering charges, we get

Eω,j = −eikirj α(ω) |E0
ω|

eik|r−rj|
|r− rj |

for the jth scatterer. I.e., we have to consider the phase shift of the incoming wave ”il-

luminating” the jth scatterer eikirj , and we have to take the position of the jth scatterer

with respect to the observer into account in |r− rj |. With the above assumptions we are

considering the so-called kinematical scattering theory.

If krj ≪ 1 and kr ≫ 1, k |r− rj | can be replaced by

k |r− rj | = k
√

(r− rj) (r− rj) = k
√

r2 − 2rrj + r2j ≈ kr

√

1− 2rrj
r2

≈

≈ kr
(

1− rrj

r2

)

= kr − kfrj (2.3)

as for a large distance to the scattering ensemble kf ‖ r. Therefore the electric field has

the form
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Eω,j = −e−i(kf−ki)rj α(ω) |E0
ω|

eikr

r

= Eω,sgle · e−i(kf−ki)rj (2.4)

with Eω,sgle the field of a single scatterer as in Eq. (2.1). For the whole ensemble of charges

the total scattered electric field is therefore

Eω = Eω,sgle

∑

j

e−i(kf−ki)rj (2.5)

For a charge density ρ(r) this yields

Eω = Eω,sgle

∫

d3r′ ρ
(

r′
)

e−i(kf−ki)r
′
. (2.6)

We see that actually Eω depends only on the difference between the wave vectors of

scattered and incoming radiation, i.e., on the so-called momentum transfer Q = kf − ki.

Q is also called the scattering vector, and in most cases the scattered electrical field or

the scattered intensity is written as a function of the scattering vector

E(Q) = Eω,sgle

∫

d3r′ ρ
(

r′
)

e−iQr′

I(Q) = Iω,sgle

∣

∣

∣

∣

∫

d3r′ ρ
(

r′
)

e−iQr′
∣

∣

∣

∣

2

(2.7)

We note that in this approximation the scattering amplitude is proportional to the Fourier

transform of the charge density. IN fact, only the electrons have a considerable polarizabil-

ity, hence the scattering amplitude is proportional to the Fourier transform of the electron

density of a sample.

2.3 Scattering by Crystals

For crystals ρ (r) can be identified with the total electron density as long as ω ≫ ωB,

the Bohr frequency, i.e., the electrons can be treated as at rest on a timescale relevant

for the scattering process. Now the electrons are distributed around the atoms at sites
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Rn. Because the charge density is invariant under a translation by a lattice vector R, ,

ρ(r) = ρ(r+R), it may be written as a Fourier series

ρ(r) =
∑

G

ρGeiGr. (2.8)

Considering this in the condition ρ(r) = ρ(r+R), we see

ρ(r+R) =
∑

G

ρGeiGr eiGR =
∑

G

ρGeiGr = ρ(r). (2.9)

Which is obviously only satisfied for arbitrary r if for all vectors G eiGR = 1 holds. This

is a definition of G, and all vectors G satisfying this relation form the so-called reciprocal

lattice of a crystal lattice. The definition of the reciprocal lattice vectors may also be

written in the more common form

G ·R = 2πm (2.10)

with m an integer. Inserting Eq.(2.8) into Eq.(2.7), and recalling the definition of the

Dirac-δ function
∫∞
−∞ d3r eikr = δ(k), we get

I (Q) ∼
∣

∣

∣

∣

∣

∑

G

ρG

∫

d3r ei(Q−G)r

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

G

ρGδ(Q−G)

∣

∣

∣

∣

∣

2

, (2.11)

i.e., scattering occurs only in some exceptional directions, namely when the momentum

transfer Q equals a reciprocal lattice vector G. This is the Laue-condition for scattering

from a perfect crystal:

Q = G (2.12)

2.3.1 Bragg’s Law, Connection With Lattice Parameter

The scattering geometry for a crystal can now be depicted as in Fig. 2.2, the so-called Ewald

construction. Instead of orienting the coordinate axes along the incident wavevector ki,

we rather draw the scattering geometry in the coordinate system of the reciprocal lattice
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Figure 2.2: Scattering geometry depicted in reciprocal space.

of our sample. The reciprocal lattice points G are indicated as black dots. The incident

beam ki has a certain orientation with respect to the sample, given by the incidence angle

with respect to the surface ω (sorry, we used the same symbol for the wavelength before,

but from now on, ω always denotes the incidence angle). As the scattering is elastic, all

possible wave vectors of the scattered beam describe the so-called Ewald circle (or Ewald

sphere, but here we restrict ourselves to a twodimensional case, where ki, kf and the

sample’s surface normal n lie in one plane; this geometry is therefore also called coplanar

scattering geometry). Scattering occurs only for a momentum transfer Q, if the Ewald

circle intersects a reciprocal lattice point, i.e., for Q = G. The scattering angle between

kf and ki is called 2θ (the factor 2 is a historical convention). From the figure it is obvious

that the length of the scattering vector is

|Q|
2

= k sin θ =
2π

λ
sin θ,

The reciprocal lattice vector in the case of a cubic lattice (the only type of crystal lattice

which we will consider in this course) can be written as

G =
2π

a
(h, k, l)

|G| =
2π

a

√

h2 + k2 + l2.

For Q = G, and hence also |Q| = |G|, we obtain the Bragg condition for scattering from

a perfect crystal:
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2 a sin θ =
√

h2 + k2 + l2 λ, (2.13)

or, with the spacing between the {hkl} planes being dhkl =
a√

h2+k2+l2
and an integer m

2 dhkl sin θ = mλ. (2.14)

2.4 Scattering from Crystals of Finite Size

In order to describe scattering from a finite crystal, we may start from Eq. (2.11), but

the integration is restricted to a finite region of space. Consequently, the Dirac-δ will not

appear, however, if the crystal is much larger than the spacing of the atoms, it is still

”in some sense” infinite, i.e., the condition for scattering Q = G is still valid, but the

reflections are no longer infinitely sharp, but somewhat extended in reciprocal space. In

order to see this more quantitatively, we may use a small ”trick”: the shape function Ω of

the crystal, allowing us to expand the integration in Eq. (2.11) to the whole direct space.

Let us consider the function Y∞ describing the structure of the ideal crystal (of infinite

size)

Y∞ (r) =
∑

lattice sites s

δ (r−Rs)

and the function Ω describing the shape (and size) of the crystal

Ω (r) = {1 inside
0 outside the crystal

the amplitude of the scattered radiation is

E (Q) = f(Q)

∫

d3rY∞ (r) Ω (r) eiQr.

f (Q) =
ν
∑

γ=1

∫

d3r′ ργ
(

r′
)

eiQr′ (2.15)

is the so-called structure factor of the crystal, containing the details of the electron dis-

tributions ργ around the ν atoms in the unit cell, i.e., information on the basis of the

crystal. It modifies the intensities of the individual Bragg reflections G. But as f(Q) is

the Fourier transform of the structure of one unit cell, which is small in real space, it is a

function varying slow in reciprocal space compared to the Fourier transform of the shape
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function of the whole crystal. Therefore we omit it in the following consideration, but we

must no forget that when comparing, e.g., intensities of different Bragg reflections Gj and

Gk, these intensities are modified by f(Q).

Equation (2.15) contains the product of two functions in real space. This is transformed

to the convolution of the Fourier-transformed functions in reciprocal space. We introduce

the Fourier transforms of Y∞ and Ω (v is the unit cell volume)

Y∞ (r) =
1

8π3

∫

d3k Ỹ∞ (k) e−ikr =
∑

G

Y∞
G e−iGr (2.16)

Ỹ∞ (k) =

∫

d3kY∞ (r) eikr (2.17)

Y∞
G =

1

v

∫

v

d3rY∞ (r) eiGr =
1

v

Ω (r) =
1

8π3

∫

d3k Ω̃ (k) e−ikr (2.18)

Ω̃ (k) =

∫

d3rΩ (r) eikr.

For Y∞ we have used two forms, the conventional Fourier transformation as well as a

Fourier series: because Y∞ is periodic with the lattice vectors of the crystal lattice, it can

be written as a discrete Fourier series, where the vectors G are again the vectors of the

reciprocal lattice of the crystal. Using these expressions, we get for the amplitude of the

scattered wave

E (Q) ∼ f(Q)

8π3

∫

d3k Ỹ∞ (k) Ω̃ (Q− k)

where (inserting 2.16 into 2.17) Ỹ∞ (k) = 8π3

v

∑

G δ (k−G) , and therefore

E (Q) =
f(Q)

v

∑

G

Ω̃ (Q−G) (2.19)

Hence now scattering occurs not only exactly in the Bragg points, but what we will see in

the scattering experiment is the Fourier transform of the shape function Ω̃ around each

Bragg point, for deviations from the Bragg point q = Q−G 6= 0. This is nothing else than

the convolution of Ω̃ and the Fourier transform of the lattice (i.e., the reciprocal lattice).

In Eq. (2.19) the sum over all reciprocal lattice vectors appears. However, when we measure

the intensity distribution around one specific Bragg point, we may consider only one term
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in the sum. This is justified by the fact that Ω̃ decays over length scales small compared

to the distance between different Bragg points, so that in the vicinity of one Bragg point

contributions from another Bragg point may be neglected. In a little bit more mathematical

terms: because Ω̃ (q) differs significantly from zero only for |q| ≪ |G1| , where G1 is the

shortest reciprocal lattice vector, for the calculation of I (Q) only the quadratic terms

have to be considered, as for small |Q−G| the magnitude of |Q−G′| is of the order of

|G1| except for G = G′:

I (Q) =
|f |2
v2

∑

G

∣

∣

∣
Ω̃ (Q−G)

∣

∣

∣

2
,

i.e., we have neglected all interference terms. In the vicinity of a specific Gj , only the term

Ω̃(Q−Gj) will be significantly different from zero.

Let us now consider two typical shape functions (the derivation of Ω̃(q) is given in more

detail in the appendix):

2.4.1 Example: Block–Shaped Crystals

For a rectangular block with dimensions {Li} for the Fourier transformed of the shape

function

∣

∣

∣
Ω̃ (q)

∣

∣

∣

2
=

3
∏

i=1

sin2
(

qiLi

2

)

(

qi
2

)2

holds. This function decreases with qi on the average as q−2
i and has an effective peak width

δqi defined via |Ω̃ (qi = 0) | · δqi =
∫∞
−∞ dqi

∣

∣

∣
Ω̃ (qi)

∣

∣

∣
of δqi =

2π
Li
. It also exhibits oscillations

with a frequency in reciprocal space equal to δqi.

2.4.2 Example: Superlattice

A superlattice can be seen as a one-dimensional series of block-shaped crystals, i.e., the

shape function Ω(x) is the sum of individual shape functions:

Ω(x) =
N
∑

j=1

Ωblock(x− jd)

with the individual shape function

Ωblock(x) = Θ(x)Θ(b− x),
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Figure 2.3: Shape function Ω(x) of a superlattice with a ”block width” of 8 Å and a

superlattice period of 40 Å, together with the Fourier transform of the shape function Ω̃(k)

where d is the superlattice period, and b < d is the width of one ”block”. Θ(x) is the

so-called Heaviside step function, Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. For the

square of the absolute value of Ω̃ we obtain:

|Ω̃(k)|2 =
4

k2
sin2

kb

2

sin2 Nkd
2

sin2 kd
2

(2.20)

An example of the shape function and its Fourier transform is shown in Fig. 2.3 for d =

40 Å, b = 8 Å. The remarkable features of the Fourier transform of the shape function are

obvious:

• a rapid oszillation with a period of 2π
Nd

indicating the total thickness.

• so called superlattice peaks with a distance of 2π
d

• an envelope of the satellites, where every d/b th peak is suppressed
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Chapter 3

Experimental Setup

and Methods

3.1 Reciprocal Space Coordinates

3.1.1 Connection Between Angles and Reciprocal Space Coordinates

The connection between the goniometer angles ω and 2θ and the reciprocal space coordi-

nates used in Chap.2 can easily be seen from Fig. 3.1. The diffraction vector Q = ki−ks

is directly connected to the scattering angle θ via

|Q|
2

= |ki,s| sin θ

Q = 2k sin θ =
4π

λ
sin θ (3.1)

We consider coplanar scattering, i.e., incident and scattered wavevector ki,f and the surface

normal n lie in a common plane. For this geometry we denote the direction of n as the

z-direction, and the direction parallel to the sample surface as x-direction. Then we get

for the components of the scattering vector Q = (Qx, 0, Qz)

Qx =
4π

λ
sin θ sin (ω − θ)

Qz =
4π

λ
sin θ cos (ω − θ) (3.2)

Inverting these expressions, we can calculate the goniometer angles from the reciprocal

space coordinates via

15
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Figure 3.1: Picture of reciprocal space for the sample surface perpendicular to 〈001〉 and

the in–plane vector (parallel to the sample surface in the drawing) 〈110〉.

θ = arcsin

(

λ

4π
Q

)

ω = θ + arccos
Qz

Q
(3.3)

For a cubic lattice the reciprocal lattice vectors have a simple form: G =2π
a
(h, k, l) , with

a the lattice constant of the sample. The z component of G is Gz = nG, the x component

can be written as Gx = n× n×G (n has length 1). In our case, n = (0, 0, 1) holds. For

the most common Bragg reflections, the sample azimuth (x-direction) will be either along

the crystallographic [110] or [100] directions. For the two cases, the connection between

Q = G and the lattice parameter are the following:

a =
2π

Qz
l

=
2
√
2π

Qx,[110]
h

=
2π

Qx,[100]
h (3.4)

For tetragonally distorted samples, as for the SiGe– and SiC–layers investigated here, the

relation have to be modified. With g ≡ (h, k, l) one can write G as
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G =
2π

a⊥
n (ng)− 2π

a‖
n× (n× g, )

i.e., we have to consider the lattice parameters in growth direction a⊥ (along n) and

parallel to the surface a‖ separately. Consequently, for tetragonal distortion, where the

lattice parameters in x- and y-directions are equal, Eq.(3.5) has to be slightly modified:

a⊥ =
2π

Qz
l

a‖ =
2
√
2π

Qx,[110]
h

a‖ =
2π

Qx,[100]
h (3.5)

Some other probably useful relations are:

l =
2a⊥
λ

sin θ cos (ω − θ)

h = k =

√
2a‖
λ

sin θ sin (ω − θ)

θ = arcsin

(

λ

2

√

h2 + k2

a2‖
+

l2

a2⊥

)

ω = θ + arccos

l
a⊥

√

h2+k2

a2
‖

+ l2

a2⊥

(3.6)

Note that here we are always considering the lattice parameters of a primitive cubic cell.

Silicon, germanium and carbon (diamond) and their compounds crystallize in the diamond

lattice structure. It is composed of two fcc-lattices which are shifted by a quarter of the

space diagonal along the space diagonal with respect to each other. Hence the primitive

cubic cell contains 8 atoms, which leads to the following rule for the Bragg reflections:

Only reflections are allowed with either

• h, k, and l even and the sum h+ k + l a multiple of 4, or

• h, k, and l odd.
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3.1.2 Scan Directions, Asymmetrical Reflections

For the recording of x–ray data three major scan modes are used, which can be seen

from Fig. 3.2. An ω–scan is performed by rotating the sample around the ω–axis. In the

coordinate system of the sample this corresponds to a rotation of ki,ks, and Q around the

origin of reciprocal space, as indicated in Fig. 3.2a. Figure 3.2b illustrates an ω–2θ–scan,

where the ω– and 2θ–drives of the goniometer are moved simultaneously, the 2θ–drive at

twice the angular speed than the ω–drive. The effect is a scan along the Q–direction in

reciprocal space. As a consequence, for each point Q in reciprocal space the ω– and 2θ–

scan directions are perpendicular with respect to each other. Another important direction

is the 2θ–direction, which corresponds to a scan along the Ewald sphere in Fig. 3.2a,b.

Figure 3.2: Illustration of the ω– and ω–2θ–scan directions in reciprocal space.

For an asymmetrical reflection there are two possible scattering geometries. One is the

so called ”grazing exit” configuration as shown in Fig. 3.3, where the incident beam hits

the sample at a relatively steep angle, whereas the scattered beam leaves the sample at a

rather low angle. By exchanging the roles of incident and scattered beams, one gets to the

so called ”grazing incidence” configuration (see Fig. 3.7 for an example). The advantage

and disadvantage of the two configurations can be seen from Fig. 3.3.

In the ”grazing exit” geometry depicted in the figure, a beam with a finite width is ”com-

pressed”, i.e. the scattered beam has a smaller width than the incident one. Therefore a
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Figure 3.3: Illustration of the effect of a ”grazing exit” scattering geometry: the exiting

beam is considerably smaller than the incident beam, and therefore the resolution of a scan

can be improved (by using a smaller detector slit) without loosing intensity.

smaller detector slit can be used as in the ”grazing incidence” geometry, resulting in a

higher angular resolution, without any loss in intensity.

3.1.3 Determination of a Layer’s Strain Status

When a layer of a certain material is grown on a substrate of a different material, the

layer will adopt the lateral structure of the substrate up to a certain thickness (critical

thickness [3]), known as pseudomorphic growth. Therefore, as the lattice parameter of the

layer material will be different from the substrate’s, the layer will be strained, i.e. its lattice

parameters normal to the surface and parallel to it will be different from each other. If the

film thickness exceeds the critical thickness, the layer will relax, i.e. the parallel and normal

lattice constants will get more and more equal and tend towards the equilibrium lattice

constant of the layer material. The mechanisms responsible for this relaxation process

depend on the involved materials and growth conditions (see e.g. Ref. [18]). For a cubic

material grown on top of another cubic material, as is the case for most of our samples

consisting of SiGe and/or SiC layers with various Ge and C contents grown on silicon, the

strained layers will have tetragonal symmetry. The situation for different strain states and

equilibrium lattice constants of the layer are illustrated in Fig. 3.4.

The upper three drawings of Fig. 3.4 (a to c) show from left to right the case of a fully

strained (pseudomorphic), a partially relaxed and a fully relaxed layer (grey) with bigger

equilibrium lattice constant than the substrate (white), the case of a layer with equilibrium

constant smaller than the substrate’s is illustrated in Fig. 3.4d to f.

Now, if we consider a Si substrate and a Si1−xGex layer on top of it, the reciprocal space

of this system looks as depicted in Fig. 3.5(a,b) if the Si1−xGex is fully relaxed, if it is fully

pseudomorphic, the arrangements are like in Fig. 3.5(c,d). In the first case, the symmetry

of both lattices is the same, and consequently the reflections with the same (hkl) lie in the

same directions from the origin. On the other hand, if the epilayer is pseudomorphic, the



20 CHAPTER 3. EXPERIMENTAL SETUP AND METHODS

Figure 3.4: Different strain states for a layer with bigger lattice constant (a to c) and a

layer with smaller lattice constant (d to f) than the substrate. The strain states are fully

strained (pseudomorphic; left side), partially relaxed (middle), and fully relaxed (rightmost

figures).

Figure 3.5: Reciprocal space for a Si1−xGex layer on a Si substrate for the case of complete

relaxation of the epilayer (a,b) and for completely pseudomorphic growth (c,d). Panels (a,c)

are with Qx ‖ [100], panels (b,d) for Qx ‖ [110], Qz is always parallel to [001].

in-plane lattice parameter a‖ is the same, and consequently the reflections for the same

(hkl) are aligned vertically over each other. However, a‖ and a⊥ are not independent of each

other, but are determined by the elastic properties of the material. Roughly speaking, if

the lattice parameter a‖ is compressed to a smaller value than the bulk lattice parameter
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abulk of the Si1−xGex alloy, the layer will respond by an increase of a⊥. For tetragonal

distortion of cubic materials with the perpendicular direction parallel to [001] direction

the relation

a⊥ = abulk +
2C12

C11

(

abulk − a‖
)

(3.7)

holds, where C11 and C12 are the elastic constants of the epilayer. In the case of Si1−xGex
or Si1−yCy layers, these elastic constants as well as abulk depend on the composition x or

y (see the appendix for details). Often, instead of the lattice parameters, the strain of an

epilayer with respect to its bulk lattice parameter

ε‖ =
a
‖
− abulk

abulk

ε⊥ =
a⊥ − abulk
abulk

(3.8)

is given, or alternatively the strain of an epilayer with respect to the substrate lattice

parameter asub

ǫ‖ =
a
‖
− asub

asub

ǫ⊥ =
a⊥ − asub
asub

. (3.9)

Obviously, ǫ‖ = 0 for a fully pseudomorphic layer, while it has some finite value depending

on abulk(x, y) for a relaxed layer. Vice versa, ε‖ = 0 for a fully relaxed layer, while it has

some finite value for a pseudomorphic layer. Therefore, in order to quantify the relaxation,

sometimes also the degree of relaxation is given:

R =
a
‖
− asub

abulk − asub
(3.10)

For fully relaxed layers a‖ = abulk and hence R = 1, while for pseudomorphic layers

a‖ = asub and hence R = 0 hold.

If we enlarge, as an example, the region around the (224) Bragg point in Fig. 3.5(b,d), we

obtain the so-called relaxation triangle, shown in Fig. 3.6.

The reciprocal lattice point of a fully strained layer lies directly beneath or above the

corresponding reciprocal lattice point of the substrate in an asymmetrical reflection, as
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Figure 3.6: Illustration of the effect of strain on the position of the reciprocal lattice points,

the so-called relaxation triangle. A fully strained layer exhibits the same lattice constant par-

allel to the growth plane than the substrate and therefore the corresponding reciprocal lattice

point lies exactly beneath or above the substrate’s in an asymmetrical reflection [here the

(224)], depending on wether the layer’s equilibrium lattice constant is bigger or smaller than

that of the substrate. If the layer is fully relaxed, the position of the corresponding recip-

rocal lattice point lies in the same direction in reciprocal space than that for the substrate,

provided that the layer material has the same symmetry than the substrate. The reciprocal

lattice point for a partially relaxed layer lies between those two positions. Hence changing

the strain status of a layer will result in a shift of the peak in reciprocal space as indicated

by the blue arrow, while changing the Ge content shifts the peak as indicated by the red

arrow.

the lattice constants parallel to the growth plane are equal. If the layer is fully relaxed and

the material has the same symmetry than the substrate (as is the case for our samples),

then the reciprocal lattice point of the layer will lie in the same direction in reciprocal

space than the substrate’s. If the layer is partially strained, the reciprocal lattice point lies

in between those two positions.

3.1.4 Reciprocal Space Mapping

To obtain precise data on the lattice parameters of a sample (which may consist of sev-

eral layers on a substrate), the intensity distribution around a reciprocal lattice point is

recorded by ”mapping” an entire region of reciprocal space. This is done by performing a

series of ω–2θ–scans (see below) at different ω–settings (or vice versa). An overview over

the region of reciprocal space accessible within our scattering geometry is given in Fig. 3.7.

The solid dots denote the position of the accessible reciprocal lattice points. The maximum

length of the scattering vector is twice the length of the k–vectors (backscattering of the

incident beam), and is limited by the wavelength of the x–ray source. This length is denoted

by the solid outer half circle in Fig. 3.7. Of course, in an experiment the source and detector

cannot be at exactly the same position, and therefore the biggest scattering angle 2θ will
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Figure 3.7: Picture of the region of reciprocal space accessible within the scattering geom-

etry used with the MRD for a sample grown on a 〈001〉–substrate and in plane vector 〈110〉.

For a detailed discussion see the text.

in practise be somewhat smaller than 180◦, which is denoted by the dotted line and the

shaded region inside the outer half circle. The two shaded half circles in Fig. 3.7 denote

the so–called Laue zones. To ”reach” a Bragg reflection within one of this zones, either the

incident or the scattered beam have to pass through the sample, which is not possible for

our samples (the absorption length is in the order of 100µm, the extinction length even

smaller). The lower half-plane (not shown in Fig. 3.7) corresponds to a scattering geometry

where the incident or the scattered beam or both have to pass through the sample. Also

indicated in Fig. 3.7 are the most frequently used Bragg reflections for the recording of

our data, namely the (symmetrical) (004)– and the (asymmetrical) (224)–reflection.

From a reciprocal space map around a Bragg reflection, i.e., of a region as depicted in

Fig. 3.6, the position of a peak due to an epilayer is obvious, allowing to see immediately

wether a layer is relaxed or pseudomorphic. The strain parallel and normal to the growth

plane can be calculated quantitatively from the lattice constants of the layer (which are

obtained from the coordinates of the reciprocal lattice points).

It is clear that from a map around a symmetrical reflection, only the lattice constant

normal to the growth plane can be determined, whereas from an asymmetrical reflection

both, the normal and parallel lattice constants can be obtained. We use the reciprocal

lattice of the substrate (which lattice constant is known very accurately) as a reference for

the determination of positions of reciprocal lattice points of the investigated layers, and

the lattice parameters obtained thereof.
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3.2 Setup of a High Resolution X-Ray Diffractometer

3.2.1 General

The principal setup of the diffractometer is shown in Fig. 3.8a. The incident angle ω is the

angle between the incident beam and the sample surface, the scattering angle 2θ is the

angle between incident and scattered beam. The x–ray source is a conventional x–ray tube

with a copper anode and a maximum electric power of 2kW. Our data will be recorded

using a electric power of 1.6kW (acceleration voltage 40 kV, electron current to the anode

40mA). Included in the primary beam optics is a four–crystal Ge (220) Bartels–type

monochromator. Its setup is shown schematically in Fig. 3.8b.

Figure 3.8: Scheme of the scattering geometry used with a high-resolution diffractometer

(top view): a) shows the beam geometry, b) illustrates the functionality of the four–crystal

Ge (220) Bartels–type monochromator (for details see the text).

The functionality of the monochromator can be seen from Fig. 3.8b and Fig. 3.9. The first

crystal ”selects” a different angle for each wavelength of the polychromatic x–ray source,

indicated by the different line styles in Fig. 3.8b, the solid line in Fig.3.8b indicates the

part of the beam with the desired wavelength (and Bragg–angle). The second crystal is

aligned exactly parallel to the first one, because it is a part of the same single crystal (the

two ”reflecting” surfaces are fabricated by cutting a groove or channel into a single crystal

of Ge, therefore this type of two-reflection crystal is called a ”channel cut” crystal. Hence
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the incidence angle of any radiation reflected by the first crystal is exactly equal for both

crystals. In other words, the relation between scattering angle and wavelength (Bragg–law)

of first and second crystals is equal (Fig. 3.9a) and no further ”monochromating” effect

by the second reflection is obtained. The third crystal is mirrored as compared to the

second one. (Third and fourth crystal are in reality again a channel cut crystal.) Therefore

the part of the beam reflected by the second crystal at a somewhat higher angle than

the intended one incides the third crystal at a somewhat too low angle and is therefore

blocked (Fig. 3.9b), and the same is true for the part of the beam reflected by the second

crystal at a somewhat too low angle. Only the part of the incident beam with almost

exactly the intended wavelength therefore passes the third crystal (the finite width of the

Bragg reflections of the monochromator crystals is indicated by the ”finite” linewidth in

Fig. 3.9). The fourth crystal — similarly to the second one — has only a small effect on the

monochromacy of the primary beam and is used to reflect the beam in the same direction

it had in front of the monochromator, so that the monochromator can be removed without

the need of changing something else in the beam geometry. The wavelength of the primary

beam in our case is set to the copper Kα1–line at λ = 1.5406Å, and the line width obtained

is 12 arcsec. The detection resolution is determined by the width of a slit in front of the

detector in double crystal mode.

Figure 3.9: Schematic illustration of the monochromacy obtained with two subsequent

Bragg reflections (at crystals of the same type; ”duMond”–diagrams). The wavelength λ for

which the crystal reflects is shown as a function of the scattering angle θ, i.e., the diagram

is a graphic representation of Bragg’s law. The curves have a finite width indicating a finite

acceptance angle of the crystals. For two crystals, the region where both curves overlap

denote determine the resulting resolution in wavelength and scattering angle: a) case of

parallel crystals, the resolution is almost the same as with only one reflection; b) case of

crystals tilted by twice the Bragg angle against each other, considerable increase in resolution

as compared to a single reflection (for further details see the text).

3.2.2 Sample Stage

The sample is fixed to the sample holder using a small pump, with adhesive tape or with

a glue. When putting the sample on the sample holder, it will be tilted around three axes,
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as indicated in Fig. 3.10:

Figure 3.10: Definition of the goniometer angles: ω is the angle between incident beam

and sample surface in the scattering plane, ψ is the tilt of the surface normal of the sample

with respect to the scattering plane, and ϕ describes the rotation of the sample around its

surface normal.

• ω is defined as the angle between the sample surface and the incident beam, but the

angle measured by the instrument is rather the angle between the ”sample holder

surface normal” and the incident beam. Therefore we have to expect a certain angle

offset in ω when a sample is put on the sample holder, e.g. because of some particles

between the sample and the holder or scratches in the holder’s surface, or because

of a certain ”miscut” of the samples: usually, the surface of a sample is oriented

only with a certain precision of several tenths of a degree with respect to a certain

crystallographic orientation, in our case the (001) direction.

• The ψ–angle, i.e., the angle between the sample’s surface normal and the scattering

plane defined by the incident and scattered beam, will exhibit a similar offset for the

same reasons.

• As the sample is put on the holder, the ϕ–position, i.e. the tilt of some direction

parallel to the sample surface (e.g. the 〈110〉–direction for the measurements to

be carried out) with respect to the scattering plane (i.e. ϕ describes a rotation of

the sample around its surface normal) is determined by the eye only, which causes a

misalignment of ϕ of up to several degrees (and again the measured angle is connected

to the holder, not the sample).

Beside the angle offsets discussed above, there is an additional mechanism introducing

a misalignment to the goniometer angles: The goniometer angles are controlled by the

stepping motors, and therefore additional offsets exist caused by the finite accuracy of the
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gears connecting the motors with the goniometer axes. Therefore, also the angle 2θ should

be calibrated.

In summary, when putting a sample onto the instrument, it has to be aligned before any

measurement can be carried out. To align all goniometer angles, a series of scans has to be

performed, as the influences of the particular goniometer axes positions on the alignment

are not independent from each other, which can be seen from the following.

3.2.3 Sample Alignment

Figure 3.11: Scheme of the dependence of the intensity in the vicinity of a Bragg peak on

the goniometer alignment. a) intensity distribution for different ω and ψ position, and b) a

cross section through a) at a constant ω–angle at the right side of the maximum.

After mounting the sample, the nominal Bragg anlge 2θ and incident angle ω are cal-

culated, and the goniometer is set to this position. Now, the substrate reflection of the

sample is aligned. All samples used in this course are heterostructures deposited on Si

(001) wafers. Hence we will align the sample using the Bragg reflections from Si. As a

first step of alignment, one will perform an ω– and a 2θ –scan with low resolution (e.g.

by using a broad detector slit or the open detector) around this theoretical values to find

a starting position for further optimization steps. Usually one will for this purpose use a

”symmetrical reflection”, i.e., a reflection at lattice planes parallel to the sample surface,

as for this reflections a misalignment in ϕ is not important. If we imagine the sample is

ideally aligned on a symmetrical reflection (i.e., ω = 2θ
2 ) and then it is tilted around the

ψ–axis in Fig. 3.10, ω is effectively decreasing. To retain an ”almost aligned” position, ω

as a consequence has to be increased, so that the incident angle with respect to the lattice

planes again fulfills the Bragg condition. As the lattice planes are no longer perpendicular

to the scattering plane, and for a beam divergent normal to the scattering plane, as is the

case for our setup, the Bragg condition is fulfilled for a part of the beam only, leading to

a decrease in the scattered intensity. The resulting intensity distribution in the vicinity of

a Bragg reflection is indicated in the contour map of Fig. 3.11a.

There are several ways to obtain the proper value for ψ. One possibility is to perform a
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series of ω–scans at different ψ settings to find the intensity maximum, which is found for

the scan which has at the same time the lowest ω–value for the peak and will in most cases

show the smallest peak width. Another possibility is to perform an ψ–scan at a constant

ω value, which yields a double–peak as indicated in Fig. 3.11b, as the starting ω –position

will usually be on one of the ”wings” in Fig. 3.11a. If ψ is set to the center between the

peaks before a subsequent ω –scan is performed, the resulting ω and ψ values will lie

close to the optimum positions. ”Close”, because the shape of the iso–intensity lines of

Fig. 3.11a may be somewhat distorted if, e.g., ϕ is misaligned. Therefore here we use the

first and ”safer” method.

After ψ has been aligned, we use an asymmetrical reflection (lattice planes tilted with

respect to the sample surface) to align ϕ. If we now imagine a rotation of the sample

around the surface normal, the angle between the incident beam and the scattering planes

(which are not perpendicular to the surface normal) will again decrease, and to retain

a ”almost aligned” position, this angle has to be increased. As the latter angle differs

from ω by a certain constant value (namely exactly the tilt of the scattering planes with

respect to the surface), the resulting intensity distribution is very similar to Fig. 3.11a, but

with ϕ replacing ψ. Therefore the aligning procedure will also be the same as described

before. As was noted above, the angles ϕ and ψ are not independent from each other, i.e.

rotating the sample around the ”sample holder’s surface normal” will also change its tilt

with respect to the scattering plane, unless the sample is precisely aligned and the ”sample

holder’s surface normal” coincides with the samples surface normal. As a consequence, the

alignment procedures have to be repeated several times (at least once), until the remaining

offsets are negligible.

3.3 Operating the X′Pert PRO PANalytical Diffractometer

In the following a description of the X′Pert PRO PANalytical diffractometer is given,

intended as a short reference for this course. The instrument is designed as a full-protection

unit concerning radiation safety, therefore there is no danger of getting exposed to x-rays.

However, as the diffractometer is a high precision mechanical instrument, and the anode

is operated at high electrical power, everything should be handled carefully. If anything

differs from the description here, please ask the tutor or somebody experienced, do not

just try things!

Please read this instruction completely before starting the experiment. Then, it is best to

make all settings in the control software (setting up data directories etc.) before mounting

and aligning the sample, and finally performing the experiment.
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3.3.1 Diffractometer Elements

The main parts of the diffractometer are:

Figure 3.12: The x-ray tube and the monochromator housing

Figure 3.13: The sample stage

Figure 3.14: The x-ray detector arm and the vertical divergence slit

The x-ray tube, the monochromator, the sample stage, the vertical divergence slit and the

detector are shielded behind a metal-housing with glass-doors, so that there is no danger

of getting exposed to x-rays.
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Figure 3.15: The display-unit and the buttons for turning on/off the shutter and the light

Figure 3.16: The cooling-unit for the x-ray tube

Figure 3.17: The PC for processing the diffractometer
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The sample stage offers 6 degrees of freedom for the sample movement, listed in the order of

stacking, i.e., all elements below a certain element in the following list are moved together

with this element:

• incidence angle Omega (motorized)

• sample translation Z (motorized, translation along ”surface normal”)

• tilt angle Psi (motorized)

• azimuth angle Phi (motorized)

• sample translation X (motorized)

• sample translation Y (motorized)

In addition, the detector can be moved around a vertical axis through the common center

of rotation of all axes

• detector angle 2Theta (motorized)

3.3.2 Mounting a Sample

As told before, there are a few possibilities to mount a sample on the samplestage:

• Use a doublesided adhesive tape

• Use a glue (removeable)

• Use a vacuumpump

In our case we use the glue. Therefore we have to move the samplestage in a horizontal

position. To do so, do the following procedure:

1. Close the doors of the diffractometer

2. Start the program 'X′Pert Data Collector' at the PC

3. Enter username and password

4. Connect the PC with the diffractometer

5. Go into the 'Instrument Settings'-menu and move all values to '0' (see Fig. 3.18)

6. Move the value for 'ψ' to '90°'
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Figure 3.18: The 'Instrument Settings'-menu

Figure 3.19: The sample glued to the samplestage

7. Push the 'Close Shutter'-button and open the doors

8. Glue the sample at the corners carefully on the cleaned center of the samplestage

(see Fig. 3.19)

9. Wait for about 3 minutes to let the glue time to harden

Now you have successfully mounted the sample.

Hint: You can also mount two samples simultanously at the positions y = + 20 mm

and y = − 20 mm instead of mounting one sample in the center at y = 0 mm.



3.3. OPERATING THE X′PERT PRO PANALYTICAL DIFFRACTOMETER 33

3.3.3 Aligning a Sample

Correct angles can only be measured, if the surface of the sample is in the middle of the

x-ray beam. It is also to consider, that the atomic layers of the sample are usally slightly

tilted to the surface. To get the right results, do the following procedure:

1. Set back the value for 'ψ' to '0°'

2. Enter the correct value for 'y'

In our case this is one of the values y = 0 mm or y = + 20 mm or y = − 20 mm

3. Also the sample is only about 1 mm thick, enter the value of '16 mm' for 'z'

Now it is time to make the first scan. You move the sample in z-direction and look at

the intensity. As the detector has no angle to the beam, the sample is in the beam-center,

when half of the intensity is absorbt.

4. Do this 'z-scan' (see Fig. 3.20)

Figure 3.20: The 'z-scan'

The scan should look like as in the picture. Now the position in which the value of 'z' is

dropped to one half can be found.

5. Enter this 1/2-value for 'z'
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We are looking for the 0-0-4-peak of Si. This peak has the nominal values:

ω = 34,56°

2θ = 69,12°

6. Run an ω-scan and find this peak (see Fig. 3.21)

Figure 3.21: The 'ω-scan - linear scale'

7. Change in the 'axes'-menu the scaling from l inear to logarithmic to find even less

intense peaks (see Fig. 3.22)

8. Move to this peak in the 'Peak Parameters'-menu (see Fig. 3.23)

9. Run a ψ-scan (see Fig. 3.24)

10. Move to this peak in the 'Peak Parameters'-menu

11. (Run a φ-scan)

As our peak is a symmetric peak, this scan has practically no influence to the results. So

you can skip this step.

Important: This procedure suggerates that all axes can be controlled without any

influence to the other axes, but this is not true! You can only move and rotate the whole

sample and therefore if one value is changed, all other values are also changed!
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Figure 3.22: The 'ω-scan - logarithmic scale'

12. Repeat the steps 6 - 11 until all values are (practically) constant

13. Run an ω-2θ-scan (you should find more than one peak!) (see Fig. 3.25)

14. Move to the position in the middle of the two (or more) peaks

You have now correctly aligned the sample. (Don’t be troubled by the fact that in many

cases aligning the sample takes longer than the measurement itself.)

3.3.4 The Measurement

There are a few possibilities to get the results in which you are interested. In practical use

the most limitating factor is the measuring-time. So you have to consider:

1. How many data-points do I need?

2. How long will I measure one point?

3. How often will I repeat my measurement?

In our case 1 measurement with approximatly 1000 data-points and a measuring-time of

about 15 - 20 minutes will be a good choice. So:
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Figure 3.23: The 'Peak Parameters'-menu

1. Enter these values in the 'Prepare Manual Scan'-menu

2. Click the 'start'-button

3. Wait until the measurement is completed.

4. Click 'Save As...' in the 'File'-menu and choose a proper directory and filename (see

Fig. 3.26)

5. Open this directory, click at the filename and choose 'Convert' (see Fig. 3.27)

This will generate two new files. If you open the file with the extension '.xy' you will see

two rows with numbers (see Fig. 3.28). The first row is the ω-angle and the second the

measured intensity at this angle. This data can be imported with programs like Microsoft

EXCEL, Origin, Open Office or something equal.

Now you have successfully completed your measurement.

6. You can now adjust and measure the 2nd mounted sample

7. Finish measuring: Put in the 'Instrumental Settings'-menu all values to '0' and the

value for 'ψ' to '90°'

8. Remove your sample(s) from the samplestage
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Figure 3.24: The 'ψ-scan'-menu

9. Copy the datafiles to the USB-stick
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Figure 3.25: The 'ω-2θ-scan'-menu

Figure 3.26: The 'File-convert'-menu
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Figure 3.27: The 'File'-menu

Figure 3.28: The 'ω-2θ-scan'-menu
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Chapter 4

Investigation of a

Si/SiGe(C) Heterostructure

The Problem

You have got two out of three samples for this course. The three structures are depicted

in Fig. 4.1: a single Si1−xGex layer on top of a Si substrate, or a single Si1−yCy layer on

a Si substrate, or a 10 period Si/Si1−xGex superlattice. In any case the substrate is a Si

wafer with (001) orientation. Therefore You should align for the Si (004) reflection. For

these type of samples, a short alignment procedure may be used: You need to align only

Psi at the symmetric (004) reflection. No Phi alignment at an asymmetrical reflection is

required, hence also no iterative refinement of Phi and Psi.

After the sample is aligned, You should measure an ω-2θ-scan around the Si (004) peak.

Use a typical scan range of 5◦. You should see the typical peaks of the Si substrate and the

SiGe, SiC, or Si/Sige-superlattice layers already in a fast scan. Choose a position in the

middle of the peaks for a fine scan, and select a useful scan range. Then, perform a fine

scan with a step widths of 0.001◦ to 0.002◦ and 1 to 2 seconds counting time per point,

depending on available time (the scan should last approximatly 15 - 20 minutes). After

the scan has finished, save the measurement (select a proper directory and file name) and

convert this file.

From the scan, You should extract the following information:

• In the case of the Si1−xGex or Si1−yCy layer:

– determine the lattice parameter in growth direction (i.e., along the surface

normal direction).

– assuming that the layer is grown pseudomorphically onto the Si substrate, de-

termine the Ge or C content using the dependence between lattice parameter

and composition given in the appendix.
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Figure 4.1: Schema of the three different samples available for this course.

– from the width of the peak corresponding to Si1−xGex or Si1−yCy, or from the

spacing of the thickness oscillations, determine the layer thickness.

• In the case of the Si/Si1−xGex superlattice:

– determine the average lattice parameter in growth direction (i.e., along the sur-

face normal direction) from the position of the zero-order superlattice reflection

(the highest peak of the series of satellites indicating the superlattice).

– assuming that the layer is grown pseudomorphically onto the Si substrate, de-

termine the average Ge content using the dependence between lattice parameter

and composition given in the appendix.

– assuming a thickness ratio of 1:4 of the Si1−xGex and Si layers, determine the

Ge content of the Si1−xGex layers.

– from the spacing of the superlattice peaks, determine the superlattice period.

Note: In order to calculate layer thicknesses or periods, it is convenient to convert the

data set into reciprocal space coordinates first. To do so, and also to calculate lattice

parameters, the angle coordinates should always be corrected, so that the substrate peak

lies at the nominal values.



Appendix

The Structure Factor of a Crystal

For crystals ρ (r) can be identified with the total electron density as long as ω ≫ ωB, the

Bohr frequency, i.e., the electrons can be treated as at rest on a timescale relevant for

the scattering process. Now the electrons are distributed around the atoms at sites Rn

Therefore the electron density can be written as

ρ (r) =

N0
∑

n=1

ρn (r−Rn) =
N
∑

s=1

ν
∑

γ=1

ρsγ (r−Rs −Rγ) (4.1)

where we have divided the sum over the atom sites n into a sum over the lattice sites s

and the sum over the sites in the basis γ. N0 = N · v is the total number of atoms in the

crystal, N the number of unit cells and ν the number of atoms per unit cell. By inserting

4.1 into 2.7, we obtain

I (Q) ∼
∣

∣

∣

∣

∣

N0
∑

n=1

fn e
iQRn

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

N
∑

s=1

ν
∑

γ=1

fsγ e
iQ(Rs+Rγ)

∣

∣

∣

∣

∣

∣

2

fn (Q) =

∫

d3r′ ρn
(

r′
)

eiQr′

fsγ (Q) =

∫

d3r′ ρsγ
(

r′
)

eiQr′ (4.2)

fn (Q) is the so–called structure factor of the crystal. For perfect crystals, fn depends only

on the arrangement and types of atoms in the unit cell:
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I (Q) =

∣

∣

∣

∣

∣

N
∑

s=1

fs e
iQRs

∣

∣

∣

∣

∣

2

fs (Q) =
ν
∑

γ=1

∫

d3r′ ργ
(

r′
)

eiQr′ , (4.3)

and as fs is the same for all unit cells, the index s is usually omitted and simply f is used

as the structure factor of a crystal.

Shape Functions of Finite Crystals

Block–Shaped Crystals

For a rectangular block with dimensions {Li} we can write the Fourier transformed of the

shape function in one dimension x

Ω̃(q) =

∫ ∞

−∞
dxΘ(x)Θ(L− x) eiqx

where Θ(x) is the so-called Heaviside step function, Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for

x < 0. This can be evaluated to

Ω̃(q) =

∫ L

0
dx eiqx =

=
1

iq
eiqx|L0 =

=
1

iq
[eiqL − 1] (4.4)

The scattered intensity I(q)is proportional to |Ω̃(q)|2 = Ω̃∗(q)Ω̃(q):
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∣

∣

∣
Ω̃(q)

∣

∣

∣

2
=

1

q2
[eiqL − 1][e−iqL − 1] =

=
1

q2
(2− eiqL − e−iqL) =

=
1

q2
(2− 2 cos qL) =

=
2

q2
2 sin2

qL

2
=

=
sin2 qL

2
(

q
2

)2 (4.5)

where we have used eix = cosx + i sinx and 1 − cosx = 2 sin2 x
2 . Performing the same

calculation for all three dimensions this finally yields

∣

∣

∣
Ω̃ (q)

∣

∣

∣

2
=

3
∏

i=1

sin2
(

qiLi

2

)

(

qi
2

)2 . (4.6)

Superlattice

A superlattice can be seen as a one-dimensional series of block-shaped crystals, i.e., the

shape function Ω(x) is the sum of individual shape functions:

Ω(x) =
N
∑

j=1

Ωblock(x− jd)

with the individual shape function

Ωblock(x) = Θ(x)Θ(b− x),

where d is the superlattice period, and b < d is the width of one ”block”. We can calculate

the Fourier transform of Ω(x):
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Ω̃(k) =

∫ ∞

−∞
dx

N
∑

j=0

Ωblock(x− jd)eikx

=
N
∑

j=1

∫ jd+b

jd

eikx

=

N
∑

j=1

1

ik
eikx|jd+b

jd

=
1

ik

N
∑

j=1

[

eikjdeikb − eikjd
]

=
1

ik

(

eikb − 1
)

N
∑

j=0

eikjd

=
1

ik

(

eikb − 1
) exp(ikNd)

eikd − 1
(4.7)

Using again eix = cosx+ i sinx and 1− cosx = 2 sin2 x
2 , the square of the absolute value

evaluates to

|Ω̃(k)|2 =
4

k2
sin2

kb

2

sin2 Nkd
2

sin2 kd
2

(4.8)

Some Useful Numbers

For the calculation of Bragg angles and Ge or C contents, the following parameters are

required:
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Lattice parameters (Å)

silicon aSi 5.43105

germanium aGe 5.65785

carbon (diamond) aC 3.5668

Wavelength (Å)

Cu Kα1 λ 1.5406

Elastic Constants (109 Pa ) C11 C12

Si 1.658 0.639

Ge 1.285 0.483

C 1.076 0.125

In order to obtain properties of compounds Si1−xGex or Si1−yCy, You can just linearly

interpolate these quantities (although this is a simplification and not really correct).

You should obtain the following Bragg angles (for asymmetrical reflections, the grazing

exit or grazing incidence geometry can be chosen, consequently two possible incidence

angles ω+ and ω− are given):

reflection ω+ (◦) ω− (◦) 2θ (◦)

Silicon

(004) 34.564 34.564 69.129

(224) 79.278 8.750 88.028

(113) 53.300 2.821 56.121

(115) 63.268 31.682 94.950

(404) 98.353 8.352 106.706

(206) 82.205 45.335 127.540

Germanium

(004) 32.997 32.997 65.993

(224) 77.099 6.570 83.669

(113) 52.083 1.604 53.686

(115) 60.820 29.234 90.054

(404) 95.369 5.369 100.737

(206) 77.872 41.002 118.874

Carbon

(004) 59.752 59.752 119.505

(113) 70.987 20.508 91.495

Lattice Parameters of Si1−xGex and Si1−yCy

Figures 4.2 and 4.3 display the variation of the bulk lattice parameter abulk of Si1−xGex
and Si1−yCy as a function of the compositions x and y, respectively. They also display

the lattice parameter a⊥ in growth direction (perpendicular to the surface, in our case
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this is the [001] direction of the crystals) as a function of x and y, assuming a tetragonal

distortion of the epilayer and fully pseudomorphic growth.

Figure 4.2: Lattice parameters Si1−xGex as a function of x: Bulk lattice parameter abulk
(blue) and perpendicular parameter a⊥ along growth direction for fully pseudomorphic

growth (green).

Data Extraction

The data are saved by the software in a binary format. You can convert into ASCII format

using the Philips MRD software: in the Main Menu, select Utilities, then Convert files and

MRD (Dnn,Ann) to ASCII (Xnn,Ynn). Select the files to convert from the list. Copy the

resulting ASCII files (with extensions Xnn) to a floppy disk.

For the ASCII data format an input routine for Matlab is provided, XGETMRD.M. Using

this script, the data can be imported into Matlab for handling, conversion in reciprocal

space coordinates etc.
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Figure 4.3: Lattice parameters Si1−yCy as a function of y: Bulk lattice parameter abulk
(blue) and perpendicular parameter a⊥ along growth direction for fully pseudomorphic

growth (green).



50 BIBLIOGRAPHY



Bibliography

[1] F. Capasso (ed.), Physics of Quantum Electron Devices, Springer Verlag Berlin

Heidelberg (1990)

[2] D. Madelung (ed.), Semiconductors; Group IV Elements and III–V Compounds,

Series Data in Science and Technology (ed. by R. Poerschke), Springer Verlag Berlin

Heidelberg (1991)

[3] J.H. van der Merwe, J. Appl. Phys. 34, 117&123 (1963)

[4] K. Seeger, Semiconductor Physics, Springer Verlag Berlin Heidelberg (1991)
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