
Pthreads Basics

Parallel Computing

Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria

Programmiersprache C++ Winter 2005 Operator overloading (2)Parallel Computing SS 2018 Pthreads Basics (2)

POSIX Threads
POSIX: Portable Operating System Interface

IEEE standards defining API of software for UNIX-like operating systems

POSIX threads (Pthreads)
standard approved 1995, amendments
functions for

creating threads
synchronizing threads
thread interaction

opaque data types for
thread identifiers
synchronization constructs
attributes
...

header file pthread.h

compilation: gcc pthread o prog prog.c

References:
D. R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997
http://opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

Programmiersprache C++ Winter 2005 Operator overloading (3)Parallel Computing SS 2018 Pthreads Basics (3)

(P)Threads in Linux
How can a thread-library be implemented?
Abstraction levels:

threads: created by a user program
kernel entity: “process”, scheduled by operating system
processor: physical device, gets assigned kernel entities by scheduler

Design decision: how to map threads to kernel entities?
M-to-1:

all threads of process mapped to one kernel entity
fast scheduling (in library), but no parallelism

M-to-N:
threads of process mapped to different kernel entities
two-level scheduling (library and kernel) incurs overhead, but allows parallelism

1-to-1:
each thread mapped to one kernel entity
scheduling in kernel, less overhead than in M-to-N case, allows parallelism
used in most modern Linux systems: Native POSIX Threads Library (NPTL)

Programmiersprache C++ Winter 2005 Operator overloading (4)Parallel Computing SS 2018 Pthreads Basics (4)

Pthread Lifecycle: States
Ready

able to run, waiting for processor

Running
on multiprocessor possibly more than one at a time

Blocked
thread is waiting for a shared resource

Terminated
system resources partially released
but not yet fully cleaned up

thread's own memory is obsolete
can still return value

(Recycled)
all system resources fully cleaned up
controlled by the operating system

Programmiersprache C++ Winter 2005 Operator overloading (5)Parallel Computing SS 2018 Pthreads Basics (5)

Pthread Creation
int pthread_create(arg0, arg1, arg2, arg3)

arg0: pthread_t *tid_ptr
where to store thread ID of type pthread_t

arg1: const pthread_att_t *attr
may set certain attributes at startup
ignored for the moment: always pass NULL → set default attributes

arg2: void *(*start)(void *)
pointer to thread's startup function
takes exactly one void* as argument

arg3: void *arg
actual parameter of thread's startup function

returns zero on success, else error code

thread ID is stored in *tid_ptr
pthread_t pthread_self() returns ID of current thread

int pthread_equal(pthread_t tid1, pthread_t tid2) compares IDs

Example: helloworld

Programmiersprache C++ Winter 2005 Operator overloading (6)Parallel Computing SS 2018 Pthreads Basics (6)

main-Thread

Process creates thread which executes main-function ➙ “main-thread”

main-thread behaves slightly differently from ordinary threads:
termination of main-thread by returning from main causes process to terminate

all threads of process terminate
Example: helloworld

calling pthread_exit(...) in main-thread causes process to continue
all created threads continue
recall lifecycle: main-thread terminates ➙ resources partially released

Attention: stack may be released!

memory errors: dereferencing pointers into main-thread's (released) stack

Example: helloworld_buggy

Programmiersprache C++ Winter 2005 Operator overloading (7)Parallel Computing SS 2018 Pthreads Basics (7)

Pthread Termination
generally: thread terminates if startup function returns
int pthread_exit(void *value_ptr)

causes thread to terminate (special semantics in main-thread)

implicitly called if thread's startup function returns (except in main-thread)

value_ptr is the thread's return value (see pthread_join(...))

int pthread_detach(pthread_t tid)
resources of tid can be reclaimed after tid has terminated

default: not detached
any thread can detach any thread (including itself)

int pthread_join(pthread_t tid, void **value)
returns when tid has terminated (or already terminated), caller blocks

optionally stores tid's return value in *value
return value from calling pthread_exit(...) or returning from startup function

joined thread will be implicitly detached
detached threads can not be joined

Programmiersprache C++ Winter 2005 Operator overloading (8)Parallel Computing SS 2018 Pthreads Basics (8)

Pthread Termination - Examples
Example: helloworld_join

Returning values from threads
returning values from threads via pthread_join(...)

example: returnval

but: waiting for termination often not needed
good practice to release system resources as early as possible

alternative to pthread_join(...): custom return mechanism
threads store their return values on the heap
Example: returnval_heap

problem: need to notify main-thread somehow that all threads have written results

error: joining a detached thread
resources are (may be or not) already released
join should fail
Example: returnval_buggy

error: returning pointer to local variable
Example: returnval_buggy

Programmiersprache C++ Winter 2005 Operator overloading (9)Parallel Computing SS 2018 Pthreads Basics (9)

Pthread Lifecycle Revisited (1/2)
Creation

process creation ➙ main-thread creation

pthread_create(...): new threads are ready
no synchronization between pthread_create(...) and new thread's execution

Startup
main-thread's main function called after process creation

newly created threads execute startup function

Running
ready threads are eligible to acquire processor ➙ will be running

scheduler assigns timeslice to ready thread ➙ threads will be preempted

switching threads ➙ context (registers, stack, pc) must be saved

Blocking
running threads may block, e.g. to wait for shared resource
blocking threads become ready (not running) again

Programmiersprache C++ Winter 2005 Operator overloading (10)Parallel Computing SS 2018 Pthreads Basics (10)

Pthread Lifecycle Revisited (2/2)
Termination

generally: when thread returns from startup function
pthread_exit

can also explicitly be cancelled by pthread_cancel(...)

(optional cleanup handlers are called)
only thread's ID and return value remain valid, other resources might be released
terminated threads can still be joined or detached

joined threads will be implicitly detached, i.e. all its system resources will be released

Recycling
occurs immediately for terminated, detached threads ➙ all resources released

Programmiersprache C++ Winter 2005 Operator overloading (11)Parallel Computing SS 2018 Pthreads Basics (11)

Creating and Using Threads: Pitfalls
Sharing pointers into stack memory of threads

perfectly alright, but handle with care
passing arguments
returning values

Resources of terminated, non-detached threads can not fully be released
large number of threads ➙ performance problems?
should join or detach threads

Relying on the speed/order of individual threads
do not make any assumptions!
need mechanism to notify threads that certain conditions are true

example: returnval_heap

must prevent threads from modifying shared data concurrently
example: sum

➙ Synchronization

	Pthreads Basics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

