
PARALLEL COMPUTING
Shared Memory

Armin Biere

Why Shared Memory?

� wide-spread availability of multi-core
� in servers for more than 20 years
� desktop for more than 15 years
� GPU computing for more than 15 years
� smart phones for more than 10 years

� power limits in CMOS technology
� around 2005 frequency scaling stopped
� Moore’s law still continued to hold
� more cores instead of higher frequency

� threads
� “known” programming model
� similar to sequential model
� but with globally shared memory
� and multiple processing units

� processes
� classical but more complicated
� fork / join paradigm
� communication over files / pipes
� mmap (..., MAP_SHARED, ...)

1/25

Shared Memory Programming Model

memory

writewrite read read

pc

registers registers

pc

thread thread

� programs / processes / threads
� local architectural (CPU) state
� including registers / program counter
� shared heap for threads
� shared memory for processes

� communicate over global memory
� think globally shared variables

� read and write atomic
� only for machine word values (and pointers)
� need other synchronization mechanisms

� solution for mutual exclusion needed

2/25

Data Race

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

pthread_t t0, t1;

int x;

void *

incx (void * dummy)

{

x++;

return 0;

}

int

main (void)

{

pthread_create (&t0 , 0, incx , 0);

pthread_create (&t1 , 0, incx , 0);

pthread_join (t0, 0);

pthread_join (t1, 0);

printf ("%d\n", x);

return 0;

}

3/25

Data Race

� this code already gives some ideas about pthreads

� increment function incx just increments the global variable x (without locking)

� the main function creates two threads running incx

� then waits for them to finish (joins with first thread t0 first, then with second t1)

� if first thread finishes executing incx before second starts then there is no problem

� incrementing twice should always yield 2 as output
� but there is a potential data race

1. first thread t0 reads value 0 of x into local register r0
2. also increments its local copy in r0 to value 1
3. second thread t1 reads old value 0 of x into its local register r1
4. also increments its local copy in r1 to value 1
5. now first thread t0 writes back r0 to the global variable x with value 1
6. finally second thread t1 writes back r0 to the global variable x with value 1

� testing with massif load (schedule steering)
valgrind --tool=helgrind or gcc -fsanitize=thread

4/25

Avoiding Data Races Through Locking / Mutual Exclusion

void *

incx (void * dummy)

{

lock ();

int tmp = x;

tmp ++;

x = tmp;

unlock ();

return 0;

}

How to implement locking?

� will first look at software only solutions

� hardware solutions much more efficient

5/25

Eraser / Lock-Set Algorithm

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E. Anderson:
Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst. 15(4):

391-411 (1997)

� check for “locking discipline”
� shared access protected by at least one lock
� collect lock sets at read and write events
� check that intersection of lock sets non-empty

� if a lock-set becomes empty
� produce improper locking warning (potential data race)
� even though the actual race might not have occurred

� initialization is tricky (phases)
� spurious warnings
� only some can surpressed automatically

� for instance implemented in helgrind

� major problem is that it needs “sandboxing” (interpreting memory accesses)

6/25

Mutual Exclusion with Deadlock

#include ...

pthread_t t0, t1;

int x;

int id[] = { 0, 1 };

int flag[] = { 0, 0 };

void lock (int * p) {

int me = *p,

int other = !me;

flag[me] = 1;

while (flag[other])

;

}

void unlock (int * p) {

int me = *p;

flag[me] = 0;

}

void *

incx (void * p)

{

lock (p);

x++;

unlock (p);

return 0;

}

int

main (void)

{

pthread_create (&t0 , 0, incx , &id[0]);

pthread_create (&t1 , 0, incx , &id[1]);

pthread_join (t0, 0);

pthread_join (t1, 0);

printf ("%d\n", x);

return 0;

}

7/25

Deadlock

� data race
� uncoordinated access to memory
� interleaved partial views
� inconsistent global state (incorrect)
� “always consistent” = safety property
� avoided by locking
� which in turn might slow-down application

� deadlock
� two threads wait for each other
� each one needs the other to “release its lock” to move on
� “no deadlock” = liveness property
� does not necessarily need sandboxing
� might be easier to debug
� might actually not be that bad (“have you tried turning it off and on again?”)
� more fine-grained versions later

� debugging dead-lock
� tools allow to find locking cycles
� run your own cycle checker after wrapping lock / unlock
� attach debugger to deadlocked program

8/25

Mutual Exclusion with Deadlock

#include ...

pthread_t t0, t1;

int x;

int id[] = { 0, 1 };

int victim = 0;

void lock (int * p) {

int me = *p;

victim = me;

while (victim == me)

;

}

void unlock (int * p) {

}

� previous version
� flag to go first
� hope nobody else has the same idea at the same time
� but check that and if this is not the case proceed
� deadlock under contention

� this version
� even more passive / helpful
� always let the other go first
� tell everybody that you are waiting
� wait until somebody else waits too
� almost always deadlocks (without contention)

� the Peterson algorithm combines both ideas

9/25

Peterson Algorithm

void lock (int * p) {

int me = *p;

int other = !me;

flag[me] = 1;

victim = me;

// __sync_synchronize ();

while (flag[other] && victim == me)

;

}

void unlock (int * p) {

int me = *p;

flag[me] = 0;

}

actually broken on real modern hardware

� without the memory fence

� because read in other thread
can be reordered before own write
(even for restricted x86 memory model)

expected:

0: write (flag[0], 1) 1: write (flag[1], 1)
0: write (victim, 0) 1: write (victim, 1)
0: read (flag[1]) = 1 1: read (flag[0]) = 1

possible:

0: read (flag[1]) = 0 1: read (flag[0]) = 0

0: write (flag[0], 1) 1: write (flag[1], 1)
0: write (victim, 0) 1: write (victim, 1)

10/25

Mutual Exclusion Algorithms

� classical “software-only” algorithms
� more of theoretical interest only now
� because memory model of multi-core machines weak (reorders reads and writes)
� but would be on reorder-free hardware still not really efficient (in space and time)

� need hardware support anyhow
� various low-level (architecture) depedent primitives
� atomic increment, bit-set, compare-and-swap and memory fences
� better use platform-independent abstractions, such as pthreads

� we will latter see how-those low-level primitives can be used

11/25

Sequential Consistency

Leslie Lamport:
How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs.

IEEE Trans. Computers 28(9): 690-691 (1979)

� systems with processors (cores) and memories (caches)
� think HW: processors and memories work in parallel
� processors read (fetch) values and write (store) computed values to memories
� common abstraction: consider each memory address as single memory module

� (single) processor sequential iff programs (reads / writes) executed sequentially
� sequentially means without parallelism
� between memories and the single processor

� processors sequentially consistent iff
every parallel execution of programs
can be reordered into a sequential execution
such that sequential semantics of programs and memories are met

� sequential (single) program semantics: read / writes executed in program order
� sequential (single) memory semantics: read returns what was written (array axioms in essence)

12/25

FIFO Read / Write Order

P1

F
IF

O

F
IF

O

M
0

M
1

M
2

M
n

P1

FIFO

P2

...

F
IF

O

F
IF

O

...

P2

M

readwritereadwritereadwritereadwrite

global FIFO read / write operation gives sequential consistency (left)
projected to individual memory addresses too (right)

13/25

Out-of-Order Write-to-Read

long a, b;

void * f (void * q) { pthread_t s, t;

a = 1;

long c = a; int main () {

long d = b; pthread_create (&s, 0, f, 0);

long u = c + d; pthread_create (&t, 0, g, 0);

return (void*) u; long u, v;

} pthread_join (s, (void **) &u);

pthread_join (t, (void **) &v);

void * g (void * p) { long m = u + v;

b = 1; printf ("%ld\n", m);

long e = b; return 0;

long f = a; }

long v = e + f;

return (void*) v;

}

14/25

Out-of-Order Write-to-Read

long a, b;

long f () { a = 1; long tmp = a; return tmp + b; }

long g () { b = 1; long tmp = b; return tmp + a; }

void * f (void * q) {

a = 1; // fwa1 = f writes a value 1 to memory

long c = a; // frac = f reads a value c from memory

long d = b; // frbd = f reads b value d from memory

long u = c + d; // fadd = f adds c and d locally

return (void*) u;

}

void * g (void * p) {

b = 1; // gwb1 = g writes b value 1 to memory

long e = b; // grbe = g reads b value e from memory

long f = a; // graf = g reads a value f from memory

long v = e + f; // gadd = g adds e and f locally

return (void*) v;

}

15/25

common sequentially consistent interleaved scenario with result 3

long a, b;

void * f (void * q) {

a = 1; // fwa1

long c = a; // frac

long d = b; // frbd

long u = c + d; // fadd

return (void*) u;

}

void * g (void * p) {

b = 1; // gwb1

long e = b; // grbe

long f = a; // graf

long v = e + f; // gadd

return (void*) v;

}

abcdefuvm memory -fifo

00------- fwa1

00------- fwa1 frac frbd

10------- frac frbd

101------ frbd

1010----- gwb1

1010----- gwb1 grbe

1010----- gwb1 grbe graf

1110----- grbe graf

11101---- graf

111011--- fadd

111011--- fadd gadd

111011--- fadd gadd madd

1110112-- gadd madd

11101122 - madd

111011223

16/25

rare sequentially consistent interleaved scenario with result 4

long a, b;

void * f (void * q) {

a = 1; // fwa1

long c = a; // frac

long d = b; // frbd

long u = c + d; // fadd

return (void*) u;

}

void * g (void * p) {

b = 1; // gwb1

long e = b; // grbe

long f = a; // graf

long v = e + f; // gadd

return (void*) v;

}

abcdefuvm memory -fifo

00------- fwa1

00------- fwa1 gwb1

00------- fwa1 gwb1 frac

00------- fwa1 gwb1 frac grbe

00------- fwa1 gwb1 frac grbe frbd

00------- fwa1 gwb1 frac grbe frbd graf

10------- gwb1 frac grbe frbd graf

11------- frac grbe frbd graf

111------ grbe frbd graf

111-1---- frbd graf

11111---- graf

111111--- fadd

111111--- fadd gadd

111111--- fadd gadd madd

1111112-- gadd madd

11111122 - madd

111111224

17/25

less frequent sequentially inconsistent scenario with result 2

long a, b;

void * f (void * q) {

a = 1; // fwa1

long c = a; // frac

long d = b; // frbd

long u = c + d; // fadd

return (void*) u;

}

void * g (void * p) {

b = 1; // gwb1

long e = b; // grbe

long f = a; // graf

long v = e + f; // gadd

return (void*) v;

}

abcdefuvm memory -fifo

00------- fwa1

00------- fwa1 frac frbd # frac OoO

00------- fwa1 frbd # frbd OoO

001------ fwa1

0010----- fwa1 gwb1

0010----- fwa1 gwb1 grbe

0010----- fwa1 gwb1 grbe graf # grbe OoO

00101---- fwa1 gwb1 graf # graf OoO

001010--- fwa1 gwb1

101010--- gwb1

111010--- fadd

111010--- fadd gadd

111010--- fadd gadd madd

1110101-- gadd madd

11101011 - madd

111010112

18/25

no sequentially consistent scenario with result 2

long a, b;

void * f (void * q) {

a = 1; // fwa1

long c = a; // frac

long d = b; // frbd

long u = c + d; // fadd

return (void*) u;

}

void * g (void * p) {

b = 1; // gwb1

long e = b; // grbe

long f = a; // graf

long v = e + f; // gadd

return (void*) v;

}

fadd1

gwb1

grbe1

fraf0

fwa1

fadd1

frbd0

frac1

madd2

19/25

Linearizability

thread B

thread A
write (a, 13)

write (a, 42) read (a) = 13

read (a) = 42

� consistency can be extended to method calls
� method calls take time during a time interval: invocation to response
� example above with read / write on memory
� below with enqueue / dequeue on queue

thread B

thread A
p.enqeue (13)

p.enqeue (42)

p.deqeue () = 13

p.deqeue () = 42

p.deqeue () = 13

p.deqeue () = 42

� execution linearizable iff
there is a linearization point between invocation and response
where the method appears to take effect instantaneously

� at the linearization point the effect of a method becomes visible to other threads

20/25

locally sequentially consistent but globally not (nor linearizable)

p.enqeue (13)

semantics

queue

p.deqeue () = 42q.enqeue (13)
thread A

thread B
q.deqeue () = 13q.enqeue (42) p.enqeue (42)

queue semantics

queue semantics

program order

program order

queue

 semantics

21/25

Progress Conditions: Wait-Free, Lock-Free

� a total method is defined in any state, otherwise partial
� like “dequeue” is partial and “enqueue” (in an unbounded queue) is total
� same for “read” and “write”

� method is blocking iff response can not be computed immediately
� common scenario in multi-processor systems

� linearizable computations can always be extended with pending responses of total messages
� so in principle pending total method responses never have to be blocking
� but it might be dificult to compute the actual response

� method m wait-free iff every invocation eventually leads to a response
� in the strong liveness sense, e.g., within a finite number of steps
� or in LTL ∀m[G (m.invocation → Fm.response)]

� method m lock-free iff infinitely often some method call finishes
� so some threads might “starve”, but the overall system makes progress
� or in LTL (∃m[GFm.invocation]) → GF∃m′[m′.response]

� every wait-free method is also lock-free
� wait-free provides stronger correctness guarantee
� usually minimizes “latency” and leads to less efficiency in terms of through put
� and is harder to implement

22/25

Compare-And-Swap (CAS)

// GCC's builtin function for CAS

bool __sync_bool_compare_and_swap (type *ptr , type oldval , type newval);

// it atomically executes the following function

bool CAS (type * address , type expected , type update) {

if (* address != expected) return false;

*address = update;

return true;

}

� considered the “mother” of all atomic operations
� many modern architectures support CAS
� alternatives: load-linked / store-conditional (LL/SC)
� see discussion of memory model for RISC-V too

� compiler uses CAS or LL/SC to implement other atomic operations
� if processors does not support corresponding operations
� like atomic increment
� C++11 atomics

23/25

Treiber Stack

Treiber, R.K..
Systems programming: Coping with parallelism.

IBM, Thomas J. Watson Research Center, 1986.

� probably first lock-free data-structure

� implements a parallel stack

� suffers from ABA problem

� see demo

24/25

Others

hazard pointers

false sharing

queues (Michael & Scott Queue)

relaxed data structures (k-stack)

Andreas Haas, Thomas Hütter, Christoph M. Kirsch, Michael Lippautz, Mario Preishuber, Ana Sokolova:
Scal: A Benchmarking Suite for Concurrent Data Structures.
NETYS 2015: 1-14

http://scal.cs.uni-salzburg.at

Paul E. McKenney
Is Parallel Programming Hard, And, If So, What Can You Do About It?
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

25/25

http://scal.cs.uni-salzburg.at

