Übungsblatt 6

Besprechung am 13.11.2017

Aufgabe 1 Zeigen oder widerlegen Sie:

- a) Elementarmatrizen sind invertierbar. Wie lauten (gegebenenfalls) die Inversen?
- b) Die Relation \leftrightarrow ist eine Äquivalenzrelation auf $\mathbb{K}^{n\times m}$ (siehe Satz 21).
- c) Für Elementarmatrizen E_1, E_2 gilt $E_1E_2 = E_2E_1$

Aufgabe 2 Über dem Körper $\mathbb{K} = \mathbb{Z}_5$ sei

$$A = \begin{pmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 1 & 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

- a) Berechnen Sie die Treppennormalform von A
- b) Berechnen Sie $\ker A$
- c) Berechnen Sie ker A über $\mathbb{K} = \mathbb{Q}$

Aufgabe 3 Untersuchen Sie, ob die Matrizen $A = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ aus $\mathbb{R}^{3\times3}$ äquivalent sind.

Aufgabe 4 a) Untersuchen Sie, ob die Vektoren (-1,2,-2), (-2,0,1), (3,1,1) aus $(\mathbb{Z}_5)^3$ linear unabhängig sind.

- b) Geben sie vier linear abhängige Vektoren im \mathbb{R}^4 an, sodass je drei dieser Vektoren linear unabhängig sind.
- c) Sei \mathbb{K} ein Körper und a, b, c drei verschiedene Vektoren aus \mathbb{K}^2 . Zeigen Sie, dass diese Vektoren linear abhängig sind.

Aufgabe 5 (schriftliche Abgabe) Sei $A \in \mathbb{K}^{n \times p}$, $B \in \mathbb{K}^{n \times q}$, $C \in \mathbb{K}^{p \times m}$, $D \in \mathbb{K}^{q \times m}$.

- a) Zeigen Sie folgende Variante von Satz 18: $(A \ B) \cdot \binom{C}{D} = A \cdot C + B \cdot D$ wobei $(A \ B) \in \mathbb{K}^{n \times (p+q)}$ jene Matrix bezeichnet, deren erste p Spalten mit den Spalten von Aund deren letzte q Spalten mit den Spalten von B übereinstimmen. Weiters bezeichnet $\binom{C}{D} \in \mathbb{K}^{(p+q)\times m}$ jene Matrix, deren obere p Zeilen aus C und deren untere q Zeilen aus D stammen.
- b) Sei $B \in \mathbb{K}^{n \times q}$. Zeigen Sie: Jede Spalte $x \in \mathbb{K}^{(n+q) \times 1}$ der Matrix $\begin{pmatrix} B \\ -I_q \end{pmatrix}$ ist Lösung des linearen Gleichungssystems $(I_n \ B) \cdot x = 0$