
CHAPTER 3
MODELLING IN COMBINATORIAL OPTIMIZATION

Combinatorial optimization usually deals with the optimization of an objective function over

a finite domain. In most of the cases the variables are restricted to integers or natural numbers

and there are restrictions that allow only finitely many feasible solutions. Although in principle

possible, exhaustive search through all finitely many feasible solutions is practically not an

option because of their huge number. Probably the most famous combinatorial optimization

problem is the travelling salesman problem, other examples are the minimum spanning tree

problem, the knapsack problem, or the bin packing problem.

3.1 AN INTRODUCTORY EXAMPLE

Suppose we run an online shop and we deliver our goods in boxes of maximum capacity C.

We have a concrete order with n items of sizes s1, . . . , sn, respectively. The size of an item

could be for instance the weight or the volume and the capacity would then be the maximum

weight allowed or the maximum space available in the box. The question is how to pack the

items into a minimal number of boxes such that all capacity restrictions are still satisfied. In

case the capacity is interpreted as volume we neglect the geometrical problem of fitting items

of a certain shape into the boxes having a certain shape, i.e. if we have items with a total

volume of x then we assume these items fit into a box with volume V ≥ x. It is clear that in

practice, by the geometry of the box and the items, this might lead to inappropriate solutions.

As a simple example, consider a sphere of volume 1, which has a diameter of ≈ 1.24. Clearly,

the spere dos not fit into a unit cube with side lenghts 1, although the volume restriction

would be satisfied.

3.2 MODELLING THE PACKING PROBLEM

The problem described in Section 3.1 is known in literature as the bin packing problem.

PROBLEM 3.1: BIN PACKING PROBLEM

Given: Positive numbers a1, . . . , an, A.

Find: k ∈ N and p : N1,n → N1,k such that

∀
1≤j≤k

∑

i
p(i)=j

ai ≤ A.

We consider n items I1, . . . , In and need to find a number k of bins B1, . . . , Bk such that

each Ii goes into one of the Bj . The packing function p assigns each item index i a bin

20



index j, and p(i) = j means that item Ii is packed into bin Bj . If k and p satisfy the above

conditions we call the pair (k, p) a feasible solution (for the bin packing problem with respect

to a1, . . . , an, A).

Often, in particular in the context of complexity theory, problems are stated as decision

problems. For the bin packing problem, this variant is the following.

PROBLEM 3.2: BIN PACKING DECISION PROBLEM

Given: Positive numbers a1, . . . , an, A and k ∈ N.

Question: Does there exist a function p : N1,n → N1,k such that (k, p) a feasible solution

for the bin packing problem with respect to a1, . . . , an, A?

If there is a feasible solution (k, p) for the bin packing problem then of course (m, q) is again

a feasible solution for all m > k and q : N1,n → N1,m such that q(i) = p(i) for all 1 ≤ i ≤ n,

hence there are infinitely many solutions. It is then pretty natural to ask for the best possible

solution.

PROBLEM 3.3: OPTIMAL BIN PACKING PROBLEM

Given: Positive numbers a1, . . . , an, A.

Find: k ∈ N and p : N1,n → N1,k such that

1. (k, p) a feasible solution for the bin packing problem w.r.t. a1, . . . , an, A and

2. k is minimal, i.e.

∀
m<k

∀
q : N1,n→N1,m

(m, q) is not a feasible solution for the bin packing

problem with respect to a1, . . . , an, A.

3.2.1 Bin Packing as a Linear Optimization Problem

A first approach for solving the optimal bin packing problem is to re-formulate the problem

as a linear programming (linear optimization) problem. First we observe that k ≤ n. We

introduce binary decision variables xij for 1 ≤ i, j ≤ n and yj for 1 ≤ j ≤ n with the following

meaning:

xij :=

{

1 item Ii goes into bin Bj

0 otherwise
yj :=

{

1 bin Bj will be occupied

0 otherwise

The feasibility of a solution for the bin packing problem can then be described by

∀
1≤j≤n

n
∑

i=1

xijai ≤ Ayj (3.1)

∀
1≤i≤n

n
∑

j=1

xij = 1, (3.2)

21



where (3.1) captures the capacity restrictions for each bin and (3.2) enforces that each ar-

ticle goes into exactly one bin. The number of bins used is obviously
∑n

j=1 yj , hence, (3.1)

and (3.2) together with

n
∑

j=1

yj −→ Min (3.3)

form an integer linear programming problem with the integer variables

xij ∈ {0, 1} for 1 ≤ i, j ≤ n and yj ∈ {0, 1} for 1 ≤ j ≤ n.

We write BPLP(a,A) for this problem. It is easy to reconstruct a solution for the optimal

bin packing problem from a solution (x, y) of BPLP(a,A). For this, let k :=
∑n

j=1 yj and let

π : N1,n → N1,n be a permutation of N1,n such that

∀
1≤i≤k

yπ(i) = 1 ∧ ∀
k<i≤n

yπ(i) = 0. (3.4)

π permutes the bins in such a way that the first k bins yπ(1), . . . , yπ(k) will be occupied and the

remaining n− k bins yπ(k+1), . . . , yπ(n) are empty. From (3.2) it follows immediately that for

every 1 ≤ i ≤ n there is a unique 1 ≤ j ≤ n with xij = 1, thus the function

p : N1,n → N1,k, i 7→ the unique j with xiπ(j) = 1

is well-defined, since π just permutes the columns of (xij) in such a way that zero-columns

are moved to the end. In order to see that (k, p) is feasible, we take 1 ≤ j ≤ k arbitrary but

fixed and now

∑

i
p(i)=j

ai =
∑

i
xiπ(j)=1

ai =

n
∑

i=1

xiπ(j)ai
(3.1)
≤ Ayπ(j)

(3.4)
= A.

The minimality of k follows easily from the definition of k together with (3.3).

EXAMPLE 3.4

Consider 7 articles with weights

a1 = 0.2 a2 = 0.5 a3 = 0.4 a4 = 0.7 a5 = 0.1 a6 = 0.3 a7 = 0.8

and bins with maximum capacity of 1. The formulation as a linear programming problem

now assumes at most n = 7 bins and introduces 49 variables x11, . . . , x77 plus 7 variables

y1, . . . , y7, hence, a total of 56 variables. We have 7 capacity restrictions (3.1)

0.2x1j + 0.5x2j + 0.4x3j + 0.7x4j + 0.1x5j + 0.3x6j + 0.8x7j ≤ yj for 1 ≤ j ≤ 7

and 7 unicity restrictions (3.2)

xi1 + xi2 + xi3 + xi4 + xi5 + xi6 + xi7 = 1 for 1 ≤ i ≤ 7,

which results in a solution

(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0),

22



which translates into k = and a mapping p for the articles

p(1) = 1 p(2) = 2 p(3) = 2 p(4) = 3 p(5) = 2 p(6) = 3 p(7) = 1.

3.2.2 Heuristic Approximation Algorithms for the Bin Packing Problem

For big instances of bin packing problems the integer linear programming problem can be

computationally very expensive. Therefore, approximation algorithms based on heuristics

are very popular for solving huge bin packing problems.

In the following, we write P for a problem and P (x) for an instance of problem P with

input x. If A is an algorithm, then A(x) denotes the result of algorithm A applied to input x.

DEFINITION 3.5: APPROXIMATION ALGORITHM

Let P be an optimization problem and P̄ the relaxed problem ignoring optimality. We

call A an approximation algorithm for problem P if and only if every y = A(x) is still a

solution of P̄ (x) but not necessarily a solution of P (x).

DEFINITION 3.6: APPROXIMATION QUALITY

Let P be an optimization problem and y(x) a solution for P (x). Let furthermore k ≥ 1.

We call A a k-approximation algorithm for problem P if and only if for all admissible

inputs x of P

A(x)

{

≤ ky(x) if P is a minimization problem

≥ 1
k
y(x) if P is a maximization problem

THEOREM 3.7

If P 6= NP a, then there is no k-approximation algorithm for the optimal bin packing

problem with k < 3
2 .

awe do not go into details

23



Data: Positive numbers a1, . . . , an, A.

Result: k, p such that (k, p) is a solution for the bin packing problem

k = 0
sort a into decreasing order

for j = 1, . . . , n do
cj = A

end

for i = 1, . . . , n do
m = 0
for j = 1, . . . , k do

if ai ≤ cj then
m = j

p(i) = j

cj = cj − ai
end

end

if m = 0 then
k = k + 1
p(i) = k

ck = ck − ai
end

end

Algorithm 2: First Fit Decreasing Heuristic (FFD)

THEOREM 3.8

FFD is a 3
2 -approximation algorithm for the optimal bin packing problem.

THEOREM 3.9

For all instances x of the bin packing problem with solution y(x) we have

FFD(x) ≤
11

9
y(x) +

2

3
.

EXAMPLE 3.10

Consider again 7 articles with weights

a1 = 0.2 a2 = 0.5 a3 = 0.4 a4 = 0.7 a5 = 0.1 a6 = 0.3 a7 = 0.8

and bins with maximum capacity of 1. Running the FFD-algorithm on this instance of

the bin packing problem gives the same solution as shown in Example 3.4.

24


