
CHAPTER 2
MODELLING IN GRAPH THEORY

Many practical problems concerning relationships, networks, scheduling, or assignments can

be modelled mathematically in the language of graph theory. In this chapter, we present

some basic concepts of graph theory and one example problem with an elegant algorithmic

solution.

2.1 INTRODUCTORY EXAMPLE

In GoogleMaps as well as in many modern cars you have the possibility to enter two geo-

graphical locations A and B and get “the shortest route” from A to B. Usually there are

different choices for how to interpret “shortest”. Of course, it will in most cases not mean

“shortest euclidean distance”, because in that case the solution would be trivial, hence un-

interesting, namely the straight line through A and B. What makes the problem interesting

and non-trivial is the underlying “network of streets”, where a “route” from A to B is only

allowed to follow these streets. Moreover, “shortest” can then mean “minimal w.r.t. length” or

“minimal w.r.t. duration”, i.e. the “quickest” route. Last but not least, various criteria can be

applied for choosing appropriate streets, e.g. avoiding toll-road, avoiding highways, prefer

scenic roads, calculate bicycle routes, etc. As an example see Figure 2.1, which shows the

quickest bicycle route from JKU Linz to the RISC Institute in Hagenberg1.

Figure 2.1: Google Maps Route Planner

1Note, however, that 1h27 for not even 20km is a bit exaggerated.

11

2.2 GRAPH THEORY

Graphs will turn out to be an appropriate mathematical model for a “network of streets” as

needed in the routing example in Section 2.1. Informally speaking, in the heart of the concept

of a graph is a collection of entities, called vertices, with connections between them, called

edges or arcs, see Figure 2.2. There are different types of graphs, depending on whether for

instance

• the connections are oriented or not,

• there can be more than one edge between to vertices,

• vertices connected by an edge must be distinct,

• edges have values associated,

• vertices have values associated,

• etc. etc.

B

3

2

1

A

Figure 2.2: A typical graph

DEFINITION 2.1: UNDIRECTED SIMPLE GRAPH, DIRECTED SIMPLE GRAPH

Let V be a set. The pair G = (V,E) is called an undirected simple graph if and only if

E ⊆ P (V) and ∀
a∈E

|a| = 2.

The pair (V,E) is called a directed simple graph if and only if

E ⊆ V 2 and ∀
a∈E

a1 6= a2.

We call G a simple graph if and only if it is an undirected or a directed graph. If G

is a graph, then V (G) := G1 and E(G) := G2 are called the vertices and edges of G,

respectively.

Note that we use sets for representing edges, which implies that there cannot be multi-

ple edges between two vertices. For certain applications, however, it is necessary to allow

12

multiple edges between vertices. In these cases, the edges E can be defined as multisets

E = (A,m), where

A = {a ∈ P (V) | |a| = 2} (for undirected graphs)

A = {a ∈ V 2 | a1 6= a2} (for directed graphs)

and

m : A → N0.

The set A is the set of potential edges, and the function m gives the multiplicity of each edge,

including the case m(a) = 0 meaning that the graph does not contain the edge a. For a

multiset E = (A,m) we write a ∈ E if and only if a ∈ A and m(a) ≥ 1.

In the multiset representation, the multiplicity of an edge tells us only, how many connec-

tions we have, but these are indistinguishable. If we want to have distinct edges, then we

define the edges as E = (X, e), where X is a set and

e : X → A with A as above.

For E = (X, e) we write a ∈ E if and only if ∃
x∈X

e(x) = a.

EXAMPLE 2.2

Figure 2.3 shows different types of graphs. The leftmost is an undirected simple graph

G1 = ({1, 2, 3}, {{1, 2}, {2, 3}}),

second from left is a directed simple graph

G2 = ({1, 2, 3}, {(1, 2), (2, 1), (1, 3), (2, 3)}).

Second from right is not an undirected simple graph because it contains a double edge

between 1 and 2, which can be defined as

G3 = ({1, 2, 3}, ({{1, 2}, {1, 3}, {2, 3}},m)) with m defined by

a m(a)

{1, 2} 2
{1, 3} 0
{2, 3} 1

Note that one cannot distinguish the two edges between 1 and 2. The rightmost is not a

simple directed graph either because it contains two distinct edges a and b from 1 to 2,

which can be defined as

G4 = ({1, 2, 3}, ({a, b, c}, e)) with e defined by

x e(x)

a (1, 2)
b (1, 2)
c (2, 3)

By definition, a simple graph cannot contain loops, i.e. edges connecting a vertex with

itself. In an undirected graph, this would be an edge {u, u}, but |{u, u}| = 1, whereas in a

13

1 G1

2 3

1 G2

2 3

1 G3

2 3

1 G4

2 3

ab

c

Figure 2.3: Different types of graphs

directed graph it would be an edge a = (u, u), but a1 = u = a2. If loops should be permitted

the restrictions |a| = 2 and a1 6= a2, respectively, have to be relaxed.

From now on, if we say G is a graph then we mean a graph in one of the representations

mentioned above. If we say G is a simple graph then we mean a simple undirected or a simple

directed graph. If G is an undirected graph then we use uv as an abbreviation for an edge

{u, v} ∈ E(G), if G is directed then uv stands for an edge (u, v) ∈ E(G).

DEFINITION 2.3: NEIGHBOUR, NEIGHBOURHOOD

Let G be a graph. The vertex v is a neighbour of vertex u if and only if uv ∈ E(G).
Furthermore, we call

NG(u) := {v ∈ V (G) | v is a neighbour of u}

the neighbourhood of u (in G).

EXAMPLE 2.4

Using the graphs from Figure 2.3,

NG1
(1) = {2} NG1

(2) = {1, 3} NG1
(3) = {2}

NG2
(1) = {2, 3} NG2

(2) = {1, 3} NG2
(3) = {}

NG3
(1) = {2} NG3

(2) = {1, 3} NG3
(3) = {2}

NG4
(1) = {2} NG4

(2) = {3} NG4
(3) = {}

DEFINITION 2.5: WALK, PATH

Let G be a graph, n ≥ 1, and a, b ∈ V (G). A finite sequencea w : N1,2n+1 → V (G)∪E(G)
is called a walk of length n from a to b in G if and only if

1. ∀
0≤i≤n

w2i+1 ∈ V (G),

2. ∀
1≤i≤n

w2i ∈ E(G),

3. w1 = a and w2n+1 = b, and

4. ∀
1≤i≤n

w2i = w2i−1w2i+1.

14

Let w be a walk of length n from a to b in G, then the subsequences

V (w) : N1,n+1 → V (G), i 7→ w2i−1 E(w) : N1,n → E(G), i 7→ w2i

are the sequence of vertices of w and the sequence of edges of w, respectively.

A finite sequence t : N1,2n+1 → V (G) ∪ E(G) is called a trail of length n from a to b

in G if and only if t is a walk of length n from a to b in G and E(t) is injective (from N1,n

to E(G)).
A finite sequence p : N1,2n+1 → V (G) ∪ E(G) is called a path of length n from a to

b in G if and only if p is a trail of length n from a to b in G and V (p) is injective (from

N1,n+1 to V (G)).

aReminder: Nm,n := {i ∈ N0 | m ≤ i ≤ n}.

A walk is an arbitrary sequence of vertices connected by appropriate edges. A trail does not

use any edge twice and a path in addition does not visit any vertex twice. A walk that is not a

trail must use at least one edge more than once, which implies that it also visits some vertices

more than once, namely those vertices that are connected by that edge.

The length n of a walk/trail/path addresses the number of edges in that walk/trail/path.

If we omit the length or the start and end then we assume the respective entities existentially

quantified, e.g. if p is a path from a to b in G then we mean a path of some length from a to

b in G, or if p is a path of length n in G then we mean a path of length n from somewhere to

somewhere in G, or if p is a path in G then we mean a path of some length from somewhere to

somewhere in G.

EXAMPLE 2.6

w = (2, (2, 1), 1, (1, 2), 2, (2, 1), 1, (1, 3), 3) is a walk of length 4 from 2 to 3 in G2.

V (w) = (2, 1, 2, 1, 3) E(w) = ((2, 1), (1, 2), (2, 1), (1, 3)),

w is neither a trail nor a path in G2.

t = (2, (2, 1), 1, (1, 2), 2, (2, 3), 3) is a trail of length 3 from 2 to 3 in G2.

V (t) = (2, 1, 2, 3) E(t) = ((2, 1), (1, 2), (2, 3)),

t is not a path in G2.

p = (2, (2, 1), 1, (1, 3), 3) is a path of length 2 from 2 to 3 in G2.

V (p) = (2, 1, 3) E(p) = ((2, 1), (1, 3)).

DEFINITION 2.7: WEIGHTED GRAPH

The triple G = (V,E, c) is called a weighted graph if and only if (V,E) is a graph and

c : E → R. We call c the cost function of G and c(e) the costs of an edge e.

All special properties of the graph (V,E), e.g. being simple, directed, undirected, translate

directly to its weighted variant (V,E, c). A sequence is a walk/trail/path in (V,E, c) if and

only if it is a walk/trail/path in (V,E).

15

DEFINITION 2.8: EXTENDED COST FUNCTION, DISTANCE

Let G = (V,E, c) be a weighted graph and F ⊆ E. Then we extend the cost function c

to

c(F) :=
∑

e∈F

c(e).

Let w be a walk of length n from a to b in G, then

c(w) :=
∑

e∈E(w)

c(e).

The distance from a to b in G is

distG(a, b) := min({c(w) | w is a walk from a to b in G}).

2.3 MODELLING THE SHORTEST-CONNECTION-PROBLEM

Our original problem from Section 2.1 can now be nicely formulated in the language of graph

theory. Given a network of streets, we define the vertices

V := {C | there are streets s and t crossing at C}.

Then all streets split into street segments between crossings, in other words, a street segment

is characterized by its endpoints, i.e. two crossings c1 and c2 on the same street such that no

other crossing lies between c1 and c2. The street segments will become the edges connecting

their endpoint crossings. If a street segment between c1 and c2 can be travelled in both

directions, then an undirected edge {c1, c2} is an appropriate model. If it can only be used

in one direction, say from c1 to c2, then a directed edge (c1, c2) is an appropriate model. For

typical street networks, directed edges are the better choice because these allow to model

one-way streets and in case both directions are available we can use (c1, c2) and (c2, c1), thus

E := {(c1, c2) ∈ V 2 | there is a street segment from c1 to c2}.

Every street segment (c1, c2) has costs associated, which can be the geographical distance

between the c1 and c2 or the time required to travel from c1 to c2, depending on the appli-

cation. Note, that the model with directed edges gives also more flexibility in this regard,

because it allows to assign different times for the two directions, which is useful for instance

when the street segment is a mountain road, where it is usually faster going down than going

up. Note that the costs will always be non-negative, i.e.

c : E → R
+
0 , (x, y) 7→ “costs” for going from x to y

The question of finding the “shortest connection” from A to B on the underlying network

of roads is then just the following problem:

16

PROBLEM 2.9: SHORTEST PATH PROBLEM

Given: The graph G = (V,E, c) with appropriate cost function c and A,B ∈ V .

Find: d = distG(A,B) and p such that p is a path from A to B in G and c(p) = d.

Note that it is sufficient to find a path, we need not search for walks or trails. Assume a walk

w = (A, e1, . . . , ek, x, . . . , x, el, . . . , en, B)

from A to B in G containing vertex x twice. Then take

w̄ = (A, e1, . . . , ek, x, el, . . . , en, B),

which certainly gives also a walk from A to B in G with c(w̄) ≤ c(w), such that we can always

construct a walk with costs at most c(w) avoiding multiple vertices. Such a walk must be a

path.

Note also that we modeled the graph above as a simple graph, i.e. a graph without

multiple edges and loops. If the original street network contains multiple edges, which might

be the case in real world (think of examples!), then we choose the one with least cost and

only put this edge into E, hence avoiding multiple edges. Consider a and b being both edges

from x to y and c(a) ≤ c(b) and assume a path

p = (A, e1, . . . , x, b, y, . . . , en, B)

from A to B in G. Then take

p̄ = (A, e1, . . . , x, a, y, . . . , en, B),

which certainly gives also a path from A to B in G with c(p̄) ≤ c(p), such that we can always

construct a path with costs at most c(p) avoiding edge b. Similary, we can eliminate loops

contained in G. Consider a being a loop from x to x and assume a trail

p = (A, e1, . . . , ek, x, a, x, el, . . . , en, B)

from A to B in G. Then take

p̄ = (A, e1, . . . , ek, x, el, . . . , en, B),

which certainly gives also a path from A to B in G with c(p̄) ≤ c(p) since c(a) ≥ 0, such that

we can always construct a path with costs at most c(p) avoiding loop a.

2.4 AN ALGORITHM FOR SOLVING THE SHORTEST PATH PROBLEM

We will now briefly describe Dijkstra’s algorithm for solving the shortest path problem. In

fact, the algorithms solves a slightly more general problem, namely it computes distG(A, v)
for all v ∈ V \ {A} and it allows to reconstruct shortest paths from A to v for all v ∈ V \ {A}.

The basic idea of the algorithm is to maintain two sets of vertices C and O = V \C, where

• C contains the closed vertices v, for which distG(A, v) is already known and

17

• O are the remaining open vertices v, for which only a tentative distance l(v) from A is

known. In fact, l(v) is the shortest distance from A on a path containing only vertices in

C except the final vertex v.

Data: G = (V,E, c) a simple graph, A ∈ V .

Result: distG(A, v) for all v ∈ V ,

preG(v) for all v ∈ V such thata P ≍ ((preG(v), v), v) is a shortest path from

A to v in G, where P is a shortest path from A to preG(v) in G.

C = ∅, O = V , l(A) = 0
for v ∈ V \ {A} do

l(v) = ∞
end

while O 6= ∅ do
v = such an o ∈ O with l(o) ≤ l(x) for all x ∈ O

C = C ∪ {v}, O = O \ {v}
distG(A, v) = l(v)
for w ∈ NG(v) do

if l(w) > distG(A, v) + c((v, w)) then
l(w) = distG(A, v) + c((v, w))
preG(w) = v

end

end

end

Algorithm 1: Dijkstra’s Algorithm

aWe write a ≍ b for the concatenation of tuples a and b.

Upon termination of the algorithm distG(A, v) contains the shortest distance from A to v

in G for all vertices v. If distG(A, v) = ∞ then there is no path from A to v in G.

B

3

2

1

A
5

6 3

1

5

4

1

Figure 2.4: A weighted graph

EXAMPLE 2.10

Let us consider the graph depicted in Figure 2.4. After initialization we have C = ∅,

O = V and
v A 1 2 3 B

l(v) 0 ∞ ∞ ∞ ∞

18

In the first run through the while-loop, we choose v = A, hence C = {A} and

O = {1, 2, 3,B}. We set distG(A,A) = 0 and compute NG(A) = {1, 2}, hence we update

v A 1 2 3 B

l(v) 0 6 5 ∞ ∞

and set preG(1) = A and preG(2) = A. Next we choose v = 2, hence C = {A, 2} and

O = {1, 3,B}. We set distG(A, 2) = 5 and compute NG(2) = {3,B}, hence we update

v A 1 2 3 B

l(v) 0 6 5 10 9

and set preG(3) = 2 and preG(B) = 2. Next we choose v = 1, hence C = {A, 2, 1} and

O = {3,B}. We set distG(A, 1) = 6 and compute NG(1) = {2, 3}, hence we update

v A 1 2 3 B

l(v) 0 6 5 7 9

and set preG(3) = 1. Next we choose v = 3, hence C = {A, 2, 1, 3} and O = {B}. We set

distG(A, 3) = 7 and compute NG(3) = {B}, hence we update

v A 1 2 3 B

l(v) 0 6 5 7 8

and set preG(B) = 3. Finally, we take v = B, hence C = {A, 2, 1, 3,B} and O = ∅. We set

distG(A,B) = 8, no more updates necessary and we exit the while-loop.

We have all distances from A to v in distG(A, v), and we can reconstruct the shortest

path using preG(v). The final path is

(A, (A, 1), 1, (1, 3), 3, (3,B),B).

19

