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Abstract

This lecture note contains a brief description of the principles of quantum models
and a discussion of two simple quantum system: a qubit and pair of qubits.

1 Fundamentals

A classical deterministic model in physics describes a system as a mathematical object
that may assume various states. The current state determines the state in a time in the
future by certain physical laws. The state can be observed by performing measurements.
The result of such a measurement is a number, the value of some coordinate of the state.
By a sufficient number of measurements, the state can be determined, and one can predict
the behavior of the system in the future.
There are limitations of such models: Measurements have a only a limited accuracy, so the
result cannot be determined exactly. External perturbations that cannot be avoided cause
deviations from the predicted behavior. Most importantly: the models just do not work
on the microscopic level.
In a classical statistical model, one gives up the notion that we can determine the state
exactly. The state still determines the state in a time in the future, but we have only
partial information of the state. This does not allow to predict the future exactly, but it
still allows to predict probabilities of future events. Measurements only tell average values.
Observations do not change the state, but they do increase our knowledge of the state, and
make predictions more accurate.
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Statistical model make their own limitations very explicit, by specifying precisely what
they can afford and what not. There is a tendency that the time development – following
the physical laws – decreases the potential of predictabilty. More severely: the models do
not work on the microscopic level either.
Enter the hero: a quantum model describes a system as a mathematical object that may
assume various states, just as the classical deterministic model. Also, the current state
determines the state in a time in the future by physical laws (the laws are different, but
the principle is the same). However, when a measurement is performed, the quantum model
is more like a classical statistical model: the result of a measurement can, in general, not
predicted exactly, we can only predict the probability distribution of the result. But,
unlike in classical statistical model, there is no state that would determine the result of
the measurement (and which, in classical statistical models, is just not known to us). In
a quantum model, the state determines the probability distribution of any measurement,
and there is nothing that would determine the result exactly.
In some sense, we can increase our knowledge by a measurement just as in the classical
statistical case: after the result of a measurement, the system is in a state that predicts
that a second measurement would give precisely the same result. However, this increase of
knowledge comes at the cost of a decrease of knowledge on the result of measuring other
observables. The observables of a quantum system are not coordinates of the states: we
cannot measure the observables without changing the state, and the determination of the
value of an observable A necessily reduces knowledge on the value of an observable B.
In contrast to both types of classical models, the result of a measurement is very often not
an arbitary number in some interval, but a number in a discrete set which is known in
advance. This fact is responsible for the name. The main advantage of quantum models
is that they work perfectly on the microscopic level.

Example: Stern/Gerlach experiments. The spin of an electron is similar to the
angular momentum: we have a spin in the direction of every unit vector in S2. The spin
values in the direction of opposite vectors sum up to zero. In contrast to classical angular
momentum, the spin can only by ±1
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To measure the spin, Stern/Gerlach used that the magnetic field of the silver atom depends
only on the spin of a single electron. To measure the spin Lz, the shoot a ray of silver atoms
directed parallel to the y-axis through an external magenrtic field Mx into the direction
of the x-axis. Then measured the spot where the electrons hit a screen parallel to the
xz-plane. The observation was that half of the atoms went slightly up, and the other half
went slightly down; we see two spots.
Now we block the downray and send the upray throgh a second magnetic field Mz. Half
of the upray goes left, half of the upray goes right, and we see again two spots.
Question 1: How many spots would we see when we block the downray and send the
upray throogh Mx again? Answer: 1.
Question 2: How many spots would we see when we block the downray and the uprightray
and send the upleftray through Mx? Answer: 2.
Question 3: Now we block the downray and send the upray through Mz, and unite
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the upleftray and the uprightray again using suitable electromagnetic fields, but – this is
important – without measuring how many atoms went left and right. The united ray is
sent through Mx. How many spots? Answer: 1.

2 The Qubit

A qubit is a quantum system X where the states are vectors of length 1 of a vector space
SX of dimension 2. The basis elements are denoted by 0 , 1 , so that every state is equal

to α 0 + β 1 , where α, β are complex numbers such that |α|2 + |β|2 = 1. After time 1 (we
take a discrete time model), the state v is transformed to Uv, where U is a matrix such
that UŪ t = I2. Such a matrix is called a unitary matrix. Note that ||Uv|| = ||v|| for all
vectors if U is unitary. Permutation matrizes are always unitary. As far as this lecture is
concerned, we may as well assume all coefficients are real and all unitary matrices are real
orthogonal matrices.
We have a basic observable of the qubit, with value set {0, 1}. The probablity for 0 is
|α|2, and the probability of 1 is |β|2. After a result 0, the qubit’s state is a multiple of 0 ,

and after a result 1, the qubit’s state is a multiple of 1 . Let us call two states equivalent
if one is a scalar multiple o the other (by a scalar of modulus 1, of course). Equivalent
states define the same probability distribution, and a unitary transformation preserves
equivalence. We do not consider other observables, because they can be simulated by first
applying a unitary transformation and then measuring the basic observable.
Qubits can be combined into strings. Let X, Y be two qubits. The states of the system
XY are unit vectors of SX⊗SY . A basis for this space is ( 0 ⊗ 0 , 0 ⊗ 1 , 1 ⊗ 0 , 1 ⊗ 1 ).
From now on, we omit the ⊗ symbol in vectors. If U1, U2 ∈ C2×2 are unitary, then U1⊗U2

is a unitary transformation of SX ⊗ SY , called the Kronecker product.
There are two basis observables: we can measure the first qubit, or we can measure the
second qubit. Let v0 = α 0 0 +β 0 1 +γ 1 0 +δ 1 1 . The probability of measuring 0 for
X is |α|2 + |β|2. After having measured zero for X, the state of the system is equivalent to

v1 =
α 0 0 +β 0 1√

|α|2+|β|2
. If we know measure Y , then the probabilty of obtaining 0 is |α|2

|α|2+|β|2 .

After the second measurement, the state is equivalent to 0 0 .

The probability of measuring first 0 for X and then 0 for Y is equal to |α|2. Similarily,

the probability of measuring first 0 for X and then 1 for Y is equal to |β|2, etc. If we
perform the measurements in a different order, namely first measuring Y and then X, we
get exactly the same probability distribution. This is a remarkable relation between the two
basic observables, called commensurable. Commensurable observable can be simultanously
measured, and after the common measurement we have an exact result for both observables.
Let n be a positive integer. Then an n-digit word in the alphabet {0, 1} can be transformed
into a quantum state of the composition of n qubits (by measuring and applying unitary
transformations). Afterwards, the system can be transported through some communication
channel. On the other side, the partner may measure the quibits one by one and get the
transmitted word.
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2.1 Entanglement

An state v = α 0 0 + β 0 1 + γ 1 0 + δ 1 1 of the system XY is called entangled if

αδ − βγ 6= 0. An important example is the Bell state b :=
0 1 − 1 0

√
2

. If we measure the

two qubits X and Y , then we get 01 or 10, each with probabilty 1
2
. But there is more: if

U is an arbitrary unitary matrix, then (U ⊗ U)b is equivalent to b. Recall that measuring
an arbitary observable of a qubit can be reduced to applying a unitary matrix and then
measuring the basic observable. If a pair of qubits XY in Bell state, then a measurement
of any observable for X will always give the opposite value as the measurement of the same
observable for Y .
Assume that Alice and Bob share a pair of qubits in Bell state, where Alice controls X
and Bob controls Y . Then Alice can transmit two bits to Bob by applying a unitary
transformation depending on the two bits, and sending X to Bob. Here is how it works:

00 : Alice applies C00 := I2 (i.e., she leaves X as it is).

01 : Alice applies C01 :=

(
1 0
0 −1

)
.

10 : Alice applies C10 :=

(
0 1
1 0

)
.

11 : Alice applies C11 :=

(
0 1
−1 0

)
.

Bob receives X from Alice and applies a certain unitary matrix D to the pair XY and
then measures X and Y . For the correct choice of D, the result is equal to the transmitted
code word.

Exercise (computation of the decoding matrix D): Compute cij := (Cij ⊗ I2)b for i, j =
0, 1. Compute a matrix D such that

Dc00 = 0 0 , Dc01 = 0 1 , Dc10 = 1 0 , Dc11 = 1 1 .

Show that D is unitary.

To use this method (superdense coding) on a larger scale, Alice and Bob must prepare
a sufficient number of qubits together before separating. Then they can send each other
words of length 2n by applying this protocol and sending n qubits over the quantum
channel.
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