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Logical Models of Problems and Computations

What is the purpose of logical modeling?

� Precisely describe the problem to be solved.
� Clarification of mind, resolution of ambiguities.
� Specification of program to be developed.

� Software-supported analysis of the problem and its solution.
� Validation of specification.
� Validation/verification of solution.
� Interactive/automatic provers and model checkers.

� Automatic computation of solution respectively simulation of execution.
� Logical solvers (SMT: Satisfiability Modulo Theories).
� Perhaps: rapid prototyping of a later manually written program.

To profit from software, we need computer-understandable models.
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1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

4. The Temporal Logic of Actions (TLA)
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Specifying Problems

� A (computational) problem:

Input: x1 ∈ T1, . . . , xn ∈ Tn where Ix

Output: y1 ∈ U1, . . . , ym ∈ Um where Ox,y

� Input variables x1, . . . , xn.
� With types T1, . . . ,Tn.

� Input condition (precondition) Ix.
� A formula whose free variables occur in x1, . . . , xn.

� Output variables y1, . . . , ym.
� With types U1, . . . ,Um.

� Output condition (postcondition) Ox,y.
� A formula whose free variables occur in x1, . . . , xn, y1, . . . , ym.

Formulas refer to functions and predicates that characterize the problem domain.
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Example

Extract from a finite sequence s a subsequence of length n starting at position p.

s

t

n
p

Input: s ∈ T∗, n ∈ �, p ∈ � where

n + p ≤ length(s)
Output: t ∈ T∗ where

length(t) = n ∧
∀i ∈ �. i < n⇒ t[i] = s[i + p]

The resulting sequence must have appropriate length and contents.
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Implementing Problem Specifications

� The specification demands a function f : T1 × . . .×Tn → U1 × . . .×Um such that

∀x1 ∈ T1, . . . , xn ∈ Tn. Ix ⇒ let (y1, . . . , ym) = f (x1, . . . , xn) in Ox,y

� For all arguments x1, . . . , xn that satisfy the input condition,
� the result (y1, . . . , ym) of f satisfies the output condition.

� The specification itself already implicitly defines such a function:

f (x1, . . . , xn) := choose y1 ∈ U1, . . . , ym ∈ Um. Ox,y

� An implicit function definition (whose result is arbitrary, if no values satisfy O).
� An actual implementation must provide an explicitly defined function.

� Right-side of definition is a term that describes a constructive computation.

The ultimate goal of computer science/mathematics is to provide explicit
definitions of functions (i.e., programs) that implement problem specifications.
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Function Definitions

� An (explicit) function definition

f : T1 × . . . × Tn → T

f (x1, . . . , xn) := tx

� Special case n = 0: a constant definition c : T, c := t.

� Function constant f of arity n.

� Type signature T1 × . . . × Tn → T .

� Parameters x1, . . . , xn (variables).

� Body tx (a term whose free variables occur in x1, . . . , xn).

We thus know ∀x1 ∈ T1, . . . , xn ∈ Tn. f (x1, . . . , xn) = tx.

6/59



Examples
� Definition: Let x and y be natural numbers. Then the square sum of x and y is

the sum of the squares of x and y.

squaresum : � ×�→ �
squaresum(x, y) := x2 + y2

� Definition: Let x and y be natural numbers. Then the squared sum of x and y

is the square of z where z is the sum of x and y.

sumsquared : � ×�→ �
sumsquared (x, y) := let z = x + y in z2

� Definition: Let n be a natural number. Then the square sum set of n is the set
of the square sums of all numbers x and y from 1 to n.

squaresumset : �→ P(�)
squaresumset(n) := {squaresum(x, y) | x, y ∈ � ∧ 1 ≤ x ≤ n ∧ 1 ≤ y ≤ n}
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Predicate Definitions

� An (explicit) predicate definition

p ⊆ T1 × . . . × Tn

p(x1, . . . , xn) :⇔ Fx

� Predicate constant p of arity n.

� Type signature T1 × . . . × Tn.

� Parameters x1, . . . , xn (variables).

� Body Fx (a formula whose free variables occur in x1, . . . , xn).

We thus know ∀x1 ∈ T1, . . . , xn ∈ Tn. p(x1, . . . , xn) ⇔ Fx.
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Examples

� Definition: Let x, y be natural numbers. Then x divides y (written as x |y) if
x · z = y for some natural number z.

| ⊆ � ×�
x |y :⇔ ∃z ∈ �. x · z = y

� Definition: Let x be a natural number. Then x is prime if x is at least two and
the only divisors of x are one and x itself.

isprime ⊆ �
isprime(x) :⇔ x ≥ 2 ∧ ∀y ∈ �. y |x ⇒ y = 1 ∨ y = x

� Definition: Let p, n be a natural numbers. Then p is a prime factor of n, if p is
prime and divides n.

isprimefactor ⊆ � ×�
isprimefactor (p, n) :⇔ isprime(p) ∧ p|n 9/59



Implicit Definitions

� An implicit function definition

f : T1 × . . . × Tn → T

f (x1, . . . , xn) := choose y ∈ T . Fx,y

� Function constant f of arity n.

� Type signature T1 × . . . × Tn → T .

� Parameters x1, . . . , xn (variables).

� Result variable y.

� Result condition Fx,y (a formula whose free variables occur in x1, . . . , xn, y).

We thus know ∀x1 ∈ T1, . . . , xn ∈ Tn. (∃y ∈ T . Fx,y) ⇒ let y = f (x1, . . . , xn) in Fx,y.
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Examples
� Definition: A root of x is some y such that y squared is x (if such a y exists).

aRoot : �→ �
aRoot(x) := choose y ∈ �. y2 = x

� Definition: The root of x ≥ 0 is that y such that the square of y is x and y ≥ 0.

theRoot : �≥0 → �≥0
theRoot(x) := choose y ∈ �≥0. y2 = x ∧ y ≥ 0

� Definition: The quotient q of m and n , 0 is such that m = n · q + r for some r < n.

quotient : � ×�\{0} → �
quotient(m, n) := choose q ∈ �. ∃r ∈ �. m = n · q + r ∧ r < n

� Definition: The gcd(x, y) of x, y (not both 0), is the greatest number dividing x and y.

gcd : (� ×�)\{(0, 0)} → �
gcd (x, y) := choose z ∈ �. z |x ∧ z |y ∧ ∀z′ ∈ �. z′ |x ∧ z′ |y ⇒ z′ ≤ z

Function result need not be uniquely defined (may be even arbitrary). 11/59



Predicates versus Functions

A predicate gives rise to functions in two ways.

� A predicate:

isprimefactor ⊆ � ×�
isprimefactor (p, n) :⇔ isprime(p) ∧ p|n

� An implicitly defined function:

someprimefactor : �→ �
someprimefactor (n) := choose p ∈ �. isprimefactor (p, n)

� An explicitly defined function whose result is a set:

allprimefactors : �→ P(�)
allprimefactors(n) := {p | p ∈ � ∧ isprimefactor (p, n)}

The preferred style of definition is a matter of taste and purpose.
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The Adequacy of Specifications

Given a specification

Input: x where Px Output: y where Qx,y

we may ask the following questions:

� Is precondition satisfiable? (∃x. Px)
� Otherwise no input is allowed.

� Is precondition not trivial? (∃x. ¬Px)
� Otherwise every input is allowed, why then the precondition?

� Is postcondition always satisfiable? (∀x. Px ⇒ ∃y.Qx,y)
� Otherwise no implementation is legal.

� Is postcondition not always trivial? (∃x, y. Px ∧ ¬Qx,y)
� Otherwise every implementation is legal.

� Is result unique? (∀x, y1, y2. Px ∧Qx,y1 ∧Qx,y2 ⇒ y1 = y2)
� Whether this is required, depends on our expectations. 13/59



Example: The Problem of Integer Division
Input: m ∈ �, n ∈ � Output: q ∈ �, r ∈ � where m = n · q + r

� The postcondition is always satisfiable but not trivial.
� For m = 13, n = 5, e.g., q = 2, r = 3 is legal but q = 2, r = 4 is not.

� But the result is not unique.
� For m = 13, n = 5, both q = 2, r = 3 and q = 1, r = 8 are legal.

Input: m ∈ �, n ∈ � Output: q ∈ �, r ∈ � where m = n · q + r ∧ r < n

� Now the postcondition is not always satisfiable.
� For m = 13, n = 0, no output is legal.

Input: m ∈ �, n ∈ � where n , 0 Output: q ∈ �, r ∈ � where m = n · q + r ∧ r < n

� The precondition is not trival but satisfiable.
� m = 13, n = 0 is not legal but m = 13, n = 5 is.

� The postcondition is always satisfiable and result is unique.
� For m = 13, n = 5, only q = 2, r = 3 is legal. 14/59



Example: The Problem of Linear Search

Given a finite integer sequence a and an integer x, determine the smallest
position p at which x occurs in a (p = −1, if x does not occur in a).

Example: a = [2, 3, 5, 7, 5, 11], x = 5 { p = 2

Input: a ∈ �∗, x ∈ �
Output: p ∈ � ∪ {−1} where

let n = length(a) in
if ∃p ∈ �. p < n ∧ a[p] = x

then p < n ∧ a[p] = x ∧
(∀q ∈ �. q < n ∧ a[q] = x ⇒ p ≤ q

)
else p = −1

All inputs are legal; a result with the specified property always exists and is
uniquely determined.
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Example: The Problem of Binary Search

Given a finite integer sequence a sorted in ascending order and an integer x,
determine some position p at which x occurs in a (p = −1, if x does not occur in a).

Example: a = [2, 3, 5, 5, 5, 7, 11], x = 5 { p ∈ {2, 3, 4}

Input: a ∈ �∗, x ∈ � where

let n = length(a) in ∀k ∈ �. k < n − 1⇒ a[k] ≤ a[k + 1]
Output: p ∈ � ∪ {−1} where

if ∃p ∈ �. p < n ∧ a[p] = x

then p < n ∧ a[p] = x

else p = −1

Not all inputs are legal; for every legal input, a result with the specified property
exists but may not be unique.
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Example: The Problem of Sorting

Given a finite integer sequence a, determine that permutation b of a that is sorted
in ascending order.

Example: a = [5, 3, 7, 2, 3] { b = [2, 3, 3, 5, 7]

Input: a ∈ �∗

Output: b ∈ �∗where

let n = length(a) in
length(b) = n ∧ (∀k ∈ �. k < n − 1⇒ b[k] ≤ b[k + 1]) ∧
∃p ∈ �∗. length(p) = n ∧
(∀k ∈ �. k < n⇒ p[k] < n) ∧
(∀k1 ∈ �, k2 ∈ �. k1 < n ∧ k2 < n ∧ k1 , k2⇒ p[k1] , p[k2]) ∧
(∀k ∈ �.k < n⇒ a[k] = b[p[k]])

All inputs are legal; the specified result exists and is uniquely determined. 17/59



1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

4. The Temporal Logic of Actions (TLA)
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The RISC Algorithm Language (RISCAL)
� A system for formally modeling mathematical theories and algorithms.

� Research Institute for Symbolic Computation (RISC), 2016–.
• http://www.risc.jku.at/research/formal/software/RISCAL

� Implemented in Java with SWT library for the GUI.
• Tested under Linux only; freely available as open source (GPL3).

� A language for the defining mathematical theories and algorithms.
� A static type system with only finite types (of parameterized sizes).
� Predicates, explicitly (also recursively) and implicitly def.d functions.
� Theorems (universally quantified predicates expected to be true).
� Procedures (also recursively defined).
� Pre- and post-conditions, invariants, termination measures.

� A framework for evaluating/executing all definitions.
� Model checking: predicates, functions, theorems, procedures, annotations may

be evaluated/executed for all possible inputs.
� All paths of a non-deterministic execution may be elaborated.
� The execution/evaluation may be visualized.

Validating algorithms by automatically verifying finite approximations.
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The RISC Algorithm Language (RISCAL)

RISCAL divide.txt &
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Using RISCAL

See also the (printed/online) “Tutorial and Reference Manual”.

� Press button (or <Ctrl>-s) to save specification.
� Automatically processes (parses and type-checks) specification.
� Press button to re-process specification.

� Choose values for undefined constants in specification.
� Natural number for val const: N.
� Default Value: used if no other value is specified.
� Other Values: specific values for individual constants.

� Select Operation from menu and then press button .
� Executes operation for chosen constant values and all possible inputs.
� Option Silent: result of operation is not printed.
� Option Nondeterminism: all execution paths are taken.
� Option Multi-threaded: multiple threads execute different inputs.
� Press buttton to abort execution.

During evaluation all annotations (pre/postconditions, etc.) are checked.
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Typing Mathematical Symbols
ASCII String Unicode Character
Int �

Nat �

:= :=

true >
false ⊥
~ ¬
/\ ∧
\/ ∨
=> ⇒
<=> ⇔
forall ∀
exists ∃
sum

∑
product

∏

ASCII String Unicode Character
~= ,

<= ≤
>= ≥
* ·
times ×
{} ∅
intersect ∩
union ∪
Intersect

⋂
Union

⋃
isin ∈
subseteq ⊆
<< 〈
>> 〉

Type the ASCII string and press <Ctrl>-# to get the Unicode character.
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Example: Quotient and Remainder

Given naturals n and m, compute the quotient q and remainder r of n divided by m.

// the type of natural numbers less than equal N
val N: �;
type Num = �[N];

// the precondition of the computation
pred pre(n:Num, m:Num) ⇔ m , 0;

// the postcondition, first formulation
pred post1(n:Num, m:Num, q:Num, r:Num) ⇔

n = m·q + r ∧
∀q0:Num, r0:Num.

n = m·q0 + r0 ⇒ r ≤ r0;

// the postcondition, second formulation
pred post2(n:Num, m:Num, q:Num, r:Num) ⇔

n = m·q + r ∧ r < m;

We will investigate this specification.
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Example: Quotient and Remainder

// for all inputs that satisfy the precondition
// both formulations are equivalent:
// ∀n:Num, m:Num, q:Num, r:Num.
// pre(n, m) ⇒ (post1(n, m, q, r) ⇔ post2(n, m, q, r));
theorem postEquiv(n:Num, m:Num, q:Num, r:Num)

requires pre(n, m);
⇔ post1(n, m, q, r) ⇔ post2(n, m, q, r);

// we will thus use the simpler formulation from now on
pred post(n:Num, m:Num, q:Num, r:Num) ⇔ post2(n, m, q, r);

Check equivalence for all values that satisfy the precondition.
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Example: Quotient and Remainder
Choose e.g. N = 5.

� Switch option Silent off:
Executing postEquiv(�,�,�,�) with all 1296 inputs.
Ignoring inadmissible inputs...
Run 6 of deterministic function postEquiv(0,1,0,0):
Result (0 ms): true
Run 7 of deterministic function postEquiv(1,1,0,0):
Result (0 ms): true
...
Run 1295 of deterministic function postEquiv(5,5,5,5):
Result (0 ms): true
Execution completed for ALL inputs (6314 ms, 1080 checked, 216 inadmissible).

� Switch option Silent on:
Executing postEquiv(�,�,�,�) with all 1296 inputs.
Execution completed for ALL inputs (244 ms, 1080 checked, 216 inadmissible).

If theorem is false for some input, an error message is displayed. 25/59



Example: Quotient and Remainder

Drop precondition from theorem.

theorem postEquiv(n:Num, m:Num, q:Num, r:Num) ⇔
// requires pre(n, m);
post1(n, m, q, r) ⇔ post2(n, m, q, r);

Executing postEquiv(�,�,�,�) with all 1296 inputs.
Run 0 of deterministic function postEquiv(0,0,0,0):
ERROR in execution of postEquiv(0,0,0,0): evaluation of

postEquiv
at line 25 in file divide.txt:

theorem is not true
ERROR encountered in execution.

For n = 0,m = 0, q = 0, r = 0, the modified theorem is not true.
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Visualizing the Formula Evaluation

Select N = 1 and visualization option “Tree”.

Investigate the (pruned) evaluation tree to determine how the truth value of a
formula was derived (double click to zoom into/out of predicates).
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Example: Quotient and Remainder
Switch option “Nondeterminism” on.

// 1. investigate whether the specified input/output combinations are as desired
fun quotremFun(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);
ensures post(n, m, result.1, result.2);

= choose q:Num, r:Num with post(n, m, q, r);

Executing quotremFun(�,�) with all 36 inputs.
Ignoring inadmissible inputs...
Branch 0:6 of nondeterministic function quotremFun(0,1):
Result (0 ms): [0,0]
...
Branch 1:35 of nondeterministic function quotremFun(5,5):
No more results (14 ms).
Execution completed for ALL inputs (413 ms, 30 checked, 6 inadmissible).

First validation by inspecting the values determined by output condition
(nondeterminism may produce for some inputs multiple outputs). 28/59



Example: Quotient and Remainder

// 2. check that some but not all inputs are allowed
theorem someInput() ⇔ ∃n:Num, m:Num. pre(n, m);
theorem notEveryInput() ⇔ ∃n:Num, m:Num. ¬pre(n, m);

Executing someInput().
Execution completed (0 ms).
Executing notEveryInput().
Execution completed (0 ms).

A very rough validation of the input condition.
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Example: Quotient and Remainder
// 3. check whether for all inputs that satisfy the precondition
// there are some outputs that satisfy the postcondition
theorem someOutput(n:Num, m:Num)

requires pre(n, m);
⇔ ∃q:Num, r:Num. post(n, m, q, r);

// 4. check that not every output satisfies the postcondition
theorem notEveryOutput(n:Num, m:Num)

requires pre(n, m);
⇔ ∃q:Num, r:Num. ¬post(n, m, q, r);

Executing someOutput(�,�) with all 36 inputs.
Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).
Executing notEveryOutput(�,�) with all 36 inputs.
Execution completed for ALL inputs (5 ms, 30 checked, 6 inadmissible).

A very rough validation of the output condition.
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Example: Quotient and Remainder

// 5. check that the output is uniquely defined
// (optional, need not generally be the case)
theorem uniqueOutput(n:Num, m:Num)

requires pre(n, m);
⇔

∀q:Num, r:Num. post(n, m, q, r) ⇒
∀q0:Num, r0:Num. post(n, m, q0, r0) ⇒

q = q0 ∧ r = r0;

Executing uniqueOutput(�,�) with all 36 inputs.
Execution completed for ALL inputs (18 ms, 30 checked, 6 inadmissible).

The output condition indeed determines the outputs uniquely.
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Validating the Specification of an Operation

Select operation quotRemFun and press the button “Show/Hide Tasks”.

Automatic generation of those formulas that validate a specification. 32/59



Example: Quotient and Remainder
Right-click to print definition of a formula, double-click to check it.

For every input, is postcondition true for only one output?

theorem _quotremFun_5_PostUnique(n:Num, m:Num)
requires pre(n, m);
⇔ ∀result:Tuple[Num,Num] with post(n, m, result.1, result.2).
(∀_result:Tuple[Num,Num] with let result = _result in
post(n, m, result.1, result.2). (result = _result));

Using N=5.
Type checking and translation completed.
Executing _quotremFun_5_PostUnique(�,�) with all 36 inputs.
Execution completed for ALL inputs (7 ms, 30 checked, 6 inadmissible).

The output is indeed uniquely defined by the output condition.
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Example: Quotient and Remainder

// 6. check whether the algorithm satisfies the specification
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);
ensures let q=result.1, r=result.2 in post(n, m, q, r);

{
var q: Num = 0;
var r: Num = n;
while r ≥ m do
{
r := r-m;
q := q+1;

}
return 〈q,r〉;

}

Check whether the algorithm satisfies the specification.
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Example: Quotient and Remainder
Executing quotRemProc(�,�) with all 36 inputs.
Ignoring inadmissible inputs...
Run 6 of deterministic function quotRemProc(0,1):
Result (0 ms): [0,0]
Run 7 of deterministic function quotRemProc(1,1):
Result (0 ms): [1,0]
...
Run 32 of deterministic function quotRemProc(2,5):
Result (0 ms): [0,2]
Run 33 of deterministic function quotRemProc(3,5):
Result (0 ms): [0,3]
Run 34 of deterministic function quotRemProc(4,5):
Result (0 ms): [0,4]
Run 35 of deterministic function quotRemProc(5,5):
Result (1 ms): [1,0]
Execution completed for ALL inputs (161 ms, 30 checked, 6 inadmissible).

A verification of the algorithm by checking all possible executions.
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Example: Quotient and Remainder
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]

requires pre(n, m);
ensures post(n, m, result.1, result.2);

{
var q: Num = 0; var r: Num = n;
while r > m do // error!
{
r := r-m; q := q+1;

}
return 〈q,r〉;

}

Executing quotRemProc(�,�) with all 36 inputs.
ERROR in execution of quotRemProc(1,1): evaluation of

ensures let q = result.1, r = result.2 in post(n, m, q, r);
at line 65 in file divide.txt:

postcondition is violated by result [0,1]
ERROR encountered in execution.

A falsificaton of an incorrect algorithm. 36/59



Example: Sorting an Array
val N:Nat; val M:Nat;
type nat = Nat[M]; type array = Array[N,nat]; type index = Nat[N-1];

proc sort(a:array): array
ensures ∀i:nat. i < N-1 ⇒ result[i] ≤ result[i+1];
ensures ∃p:Array[N,index]. (∀i:index,j:index. i , j ⇒ p[i] , p[j]) ∧

(∀i:index. a[i] = result[p[i]]);
{
var b:array = a;
for var i:Nat[N]:=1; i<N; i:=i+1 do {
var x:nat := b[i];
var j:Int[-1,N] := i-1;
while j ≥ 0 ∧ b[j] > x do {

b[j+1] := b[j];
j := j-1;

}
b[j+1] := x;

}
return b;

} 37/59



Example: Sorting an Array
Using N=5.
Using M=5.
Type checking and translation completed.
Executing sort(Array[�]) with all 7776 inputs.
1223 inputs (1223 checked, 0 inadmissible, 0 ignored)...
2026 inputs (2026 checked, 0 inadmissible, 0 ignored)...
...
5792 inputs (5792 checked, 0 inadmissible, 0 ignored)...
6118 inputs (6118 checked, 0 inadmissible, 0 ignored)...
6500 inputs (6500 checked, 0 inadmissible, 0 ignored)...
6788 inputs (6788 checked, 0 inadmissible, 0 ignored)...
7070 inputs (7070 checked, 0 inadmissible, 0 ignored)...
7354 inputs (7354 checked, 0 inadmissible, 0 ignored)...
7634 inputs (7634 checked, 0 inadmissible, 0 ignored)...
Execution completed for ALL inputs (32606 ms, 7776 checked, 0 inadmissible).
Not all nondeterministic branches may have been considered.

Also this algorithm can be automatically checked.
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Model Checking versus Proving
Two fundamental techniques for validation/verification.

� Model checking: processing a semantic model.
� Fully automatic, no human interaction is required.
� Completely possible only if the model is finite.
� State space explosion: “finite” actually means “not too big”.

� Proving: constructing a logical deduction.
� Assumes a sound deduction calculus.
� Also possible if the model is infinite.
� Complexity of deduction is independent of size of model.
� Many properties can be automatically proved (automated reasoners); in general,

however, interaction with a human is required (proof assistants).

While verifying the validity of a conjecture generally requires deduction, its
invalidity can be often quickly established by checking.
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1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

4. The Temporal Logic of Actions (TLA)

40/59



Computational Systems

Programs are just special cases of “(computational) systems”.

� Computational System
� One or more active components.
� Deterministic or nondeterministic behavior.
� May or may not terminate.

� Safety
� “Nothing bad will ever happen.”
� Partial correctness of programs: for every admissible input, if the program

terminates, its output does not violate the output condition.
� Liveness

� “Something good will eventually happen.”
� Termination of programs: for every input, the program eventually terminates.

General goal is to establish the safety and liveness of computational systems.
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Transition Systems

Any computational system can be modelled as a transition system T = (S, I, R).

� State space S = S1 × . . . × Sn: the set of all possible system states.
� Determined by the possible values of system variables x1, . . . , xn with values

from (finite or infinite) domains S1, . . . , Sn.

� Initial states I ⊆ S: the possible starts of the execution of the system.
� Typically defined by an a predicate Ix on the system variables x1, . . . , xn.

� Transition relation R ⊆ S × S: the possible execution steps.
� Typically defined by a predicate Rx,x′ between the prestate values x and the

poststate values x ′ of the program variables.

Nondeterminism: for some prestate x there may be multiple poststates x ′.
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Example
System C = (S, I, R) with counters x und y which may be independently incremented.

yx

+1 +1

S := Z × Z
I(x, y) :⇔ x = y ∧ y ≥ 0

R(〈x, y〉, 〈x ′, y′〉) :⇔
(x ′ = x + 1 ∧ y′ = y) ∨
(x ′ = x ∧ y′ = y + 1)

� Infinitely many starting states.

[x = 0, y = 0], [x = 1, y = 1], [x = 2, y = 2], . . .
� In each state two possibilities.

[x = 2, y = 3] → [x = 3, y = 3]
→ [x = 2, y = 4]

A nondeterministic system.
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System Runs
Transition system T = (S, I, R).

� System run: (finite or infinite) sequence s0 → s1 → s2 → . . . of states in S.
� s0 is initial: I(s0).
� si → si+1 ist a transition: R(s0, s1).
� If run stops in sn, then sn has no successor: ¬R(sn, s′), for all s′ ∈ S.

System run

s0

Successors of s1s2

s1 Successors of s0

System runs can be understood as paths in a directed graph. 44/59



Example
System C = (S, I, R).

S := Z × Z
I(x, y) :⇔ x = y ∧ y ≥ 0

R(〈x, y〉, 〈x ′, y′〉) :⇔
(x ′ = x + 1 ∧ y′ = y) ∨
(x ′ = x ∧ y′ = y + 1)

� Safety: �(x ≥ 0 ∧ y ≥ 0)
� Both x als y never become negative.
� True, because every system run has this property.

� Liveness: ^x ≥ 1.
� Variable x eventually becomes greater equal 1.
� False, because this system run does not have this property.

[x = 0, y = 0] → [x = 0, y = 1] → [x = 0, y = 2] → [x = 0, y = 3] → . . .
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Verifying Safety

We only consider the verification of a safety property.

� M |= �F.
� Verify that formula F is an invariant of system M.

� M = (S, I, R).
� I(s) :⇔ . . .
� R(s, s′) :⇔ R0(s, s′) ∨ R1(s, s′) ∨ . . . ∨ Rn−1(s, s′).

� Proof by induction.
� ∀s. I(s) ⇒ F(s).

• F holds in every initial state.
� ∀s, s′. F(s) ∧ R(s, s′) ⇒ F(s′).

• Each transition preserves F.
• Reduces to a number of subproofs:

F(s) ∧ R0(s, s′) ⇒ F(s′)
. . .

F(s) ∧ Rn−1(s, s′) ⇒ F(s′) 46/59



1. Specifying Problems

2. The RISC Algorithm Language (RISCAL)

3. Modeling Computations

4. The Temporal Logic of Actions (TLA)
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The Temporal Logic of Actions (TLA)

� Leslie Lamport (Microsoft Research since 2001).
� ACM Turing Award 2013.

� TLA model of a system:

Ix ∧ �[R]x ∧WFx(A) ∧ . . .

� Initial condition Ix .
� Transition relation [R]x :

• [R]x ≡ (R ∨ x = x′)
• x = x′: stutter step (nothing changes).

� Fairness conditions:
• Conjunction of formulas WFx(A) and/or SFx(A) for actions A.

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
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Example

X ≡ ∧ x ′ = x + 1
∧ y′ = y

Y ≡ ∧ y′ = y + 1

∧ x ′ = x

S ≡ ∧ (x = 0) ∧ (y = 0)
∧ �[X ∨ Y ]〈x,y〉
∧WF〈x,y〉(X) ∧WF〈x,y〉(Y )

[x = 0, x = 0] → [x = 1, y = 0] → [x = 1, y = 0] → [x = 1, y = 1] → . . .

System is described in a structured way by the logical composition of actions.
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TLA+

TLA is not just a logic.

� TLA+: A formal specification language based on TLA.
� Values from the theory of sets (no static type system).

Chris Newcombe et al. How Amazon Web Services Uses Formal Methods.
Communications of the ACM, vol. 58 no. 4, pages 66-73, April 2015.
https://doi.org/10.1145/2699417

� TLA+ Toolbox: an IDE for various TLA tools.
� Writing and syntax checking of TLA+ specifications.
� Pretty printer for generation of LATEXdocuments.
� Translator from the algorithmic language PlusCal to TLA+.
� Simulation and model checking of TLA+-specifications.
� Derivation and checking of TLA+ proofs.

http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
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TLA+ Toolbox
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Example (Plain Text)
––––––––––––––– MODULE Counter –––––––––––––––
EXTENDS Naturals
VARIABLE x,y

I == x = 0 /\ y = 0 (* the initial state condition *)

X == /\ x’ = x+1 (* increment x *)
/\ y’ = y

Y == /\ x’ = x (* increment y *)
/\ y’ = y+1

R == \/ X (* increment x or y *)
\/ Y

var == «x,y» (* the system variables *)

C == I /\ [][R]_var /\ WF_var(X) /\ WF_var(Y) (* the whole specification *)

NotNegative == [](x >= 0 /\ y >= 0) (* some properties *)
BecomeOne == <>(x = 1 /\ y = 1)
=============================================================================

Spezifikation eines Systems C und einiger Eigenschaften.
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Example (LATEX)
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The TLC Model Checker

Select specification and properties to be checked.
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The TLC Model Checker

If necessary, restrict state space to finite subset.
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The TLC Model Checker

Check the selected properties.
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The TLC Model Checker

In the error case a violating system run is displayed.
57/59



Example

––––––––––––––– MODULE Counter –––––––––––––––
EXTENDS Naturals, TLC
VARIABLE x,y

...

C == I /\ [][R /\ PrintT(«x,y»)]_var /\ WF_var(X) /\ WF_var(Y)

...
=============================================================================

User output may help to validate the model.
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The TLC Model Checker

The visited states are printed.
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