LOGICAL MODELS OF PROBLEMS AND COMPUTATIONS

Theory and Software

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Logical Models of Problems and Computations

What is the purpose of logical modeling?

- Precisely describe the problem to be solved.
\square Clarification of mind, resolution of ambiguities.
\square Specification of program to be developed.
- Software-supported analysis of the problem and its solution.
\square Validation of specification.
\square Validation/verification of solution.
\square Interactive/automatic provers and model checkers.
- Automatic computation of solution respectively simulation of execution.
\square Logical solvers (SMT: Satisfiability Modulo Theories).
\square Perhaps: rapid prototyping of a later manually written program.
To profit from software, we need computer-understandable models.

1. Specifying Problems
2. The RISC Algorithm Language (RISCAL)
3. Modeling Computations
4. The Temporal Logic of Actions (TLA)

Specifying Problems

- A (computational) problem:

Input: $x_{1} \in T_{1}, \ldots, x_{n} \in T_{n}$ where I_{x}
Output: $y_{1} \in U_{1}, \ldots, y_{m} \in U_{m}$ where $O_{x, y}$

- Input variables x_{1}, \ldots, x_{n}.
\square With types T_{1}, \ldots, T_{n}.
- Input condition (precondition) I_{x}.
\square A formula whose free variables occur in x_{1}, \ldots, x_{n}.
■ Output variables y_{1}, \ldots, y_{m}.
\square With types U_{1}, \ldots, U_{m}.
- Output condition (postcondition) $O_{x, y}$.
\square A formula whose free variables occur in $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$.
Formulas refer to functions and predicates that characterize the problem domain.

Example

Extract from a finite sequence s a subsequence of length n starting at position p.

Input: $s \in T^{*}, n \in \mathbb{N}, p \in \mathbb{N}$ where

$$
n+p \leq \operatorname{length}(s)
$$

Output: $t \in T^{*}$ where

$$
\begin{aligned}
& \text { length }(t)=n \wedge \\
& \forall i \in \mathbb{N} . i<n \Rightarrow t[i]=s[i+p]
\end{aligned}
$$

The resulting sequence must have appropriate length and contents.

Implementing Problem Specifications

- The specification demands a function $f: T_{1} \times \ldots \times T_{n} \rightarrow U_{1} \times \ldots \times U_{m}$ such that

$$
\forall x_{1} \in T_{1}, \ldots, x_{n} \in T_{n} . I_{x} \Rightarrow \text { let }\left(y_{1}, \ldots, y_{m}\right)=f\left(x_{1}, \ldots, x_{n}\right) \text { in } O_{x, y}
$$

\square For all arguments x_{1}, \ldots, x_{n} that satisfy the input condition,
\square the result $\left(y_{1}, \ldots, y_{m}\right)$ of f satisfies the output condition.

- The specification itself already implicitly defines such a function:

$$
f\left(x_{1}, \ldots, x_{n}\right):=\text { choose } y_{1} \in U_{1}, \ldots, y_{m} \in U_{m} . O_{x, y}
$$

\square An implicit function definition (whose result is arbitrary, if no values satisfy O).

- An actual implementation must provide an explicitly defined function.
\square Right-side of definition is a term that describes a constructive computation.
The ultimate goal of computer science/mathematics is to provide explicit definitions of functions (i.e., programs) that implement problem specifications.

Function Definitions

- An (explicit) function definition

$$
\begin{aligned}
& f: T_{1} \times \ldots \times T_{n} \rightarrow T \\
& f\left(x_{1}, \ldots, x_{n}\right):=t_{x}
\end{aligned}
$$

\square Special case $n=0$: a constant definition $c: T, c:=t$.

- Function constant f of arity n.
- Type signature $T_{1} \times \ldots \times T_{n} \rightarrow T$.
- Parameters x_{1}, \ldots, x_{n} (variables).
- Body t_{x} (a term whose free variables occur in x_{1}, \ldots, x_{n}).

We thus know $\forall x_{1} \in T_{1}, \ldots, x_{n} \in T_{n} . f\left(x_{1}, \ldots, x_{n}\right)=t_{x}$.

Examples

- Definition: Let x and y be natural numbers. Then the square sum of x and y is the sum of the squares of x and y.

$$
\begin{aligned}
& \text { squaresum }: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
& \operatorname{squaresum}(x, y):=x^{2}+y^{2}
\end{aligned}
$$

- Definition: Let x and y be natural numbers. Then the squared sum of x and y is the square of z where z is the sum of x and y.

$$
\begin{aligned}
& \text { sumsquared }: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
& \operatorname{sumsquared}(x, y):=\text { let } z=x+y \text { in } z^{2}
\end{aligned}
$$

- Definition: Let n be a natural number. Then the square sum set of n is the set of the square sums of all numbers x and y from 1 to n.

```
squaresumset: }\mathbb{N}->\mathcal{P}(\mathbb{N}
squaresumset(n):={\operatorname{squaresum}(x,y)|x,y\in\mathbb{N}\wedge1\leqx\leqn\wedge1\leqy\leqn}
```


Predicate Definitions

- An (explicit) predicate definition

$$
\begin{aligned}
& p \subseteq T_{1} \times \ldots \times T_{n} \\
& p\left(x_{1}, \ldots, x_{n}\right): \Leftrightarrow F_{x}
\end{aligned}
$$

- Predicate constant p of arity n.
- Type signature $T_{1} \times \ldots \times T_{n}$.
- Parameters x_{1}, \ldots, x_{n} (variables).
\square Body F_{x} (a formula whose free variables occur in x_{1}, \ldots, x_{n}).
We thus know $\forall x_{1} \in T_{1}, \ldots, x_{n} \in T_{n} . p\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow F_{x}$.

Examples

- Definition: Let x, y be natural numbers. Then x divides y (written as $x \mid y$) if $x \cdot z=y$ for some natural number z.

$$
\begin{aligned}
& \cup \backsim \subseteq \mathbb{N} \times \mathbb{N} \\
& x \mid y: \Leftrightarrow \exists z \in \mathbb{N} . x \cdot z=y
\end{aligned}
$$

- Definition: Let x be a natural number. Then x is prime if x is at least two and the only divisors of x are one and x itself.

```
isprime \subseteq\mathbb{N}
isprime(x): }\Leftrightarrowx\geq2\wedge\forally\in\mathbb{N}.y|x=>y=1\veey=
```

- Definition: Let p, n be a natural numbers. Then p is a prime factor of n, if p is prime and divides n.

$$
\begin{aligned}
& \text { isprimefactor } \subseteq \mathbb{N} \times \mathbb{N} \\
& \text { isprimefactor }(p, n): \Leftrightarrow \operatorname{isprime}(p) \wedge p \mid n
\end{aligned}
$$

Implicit Definitions

- An implicit function definition

$$
\begin{aligned}
& f: T_{1} \times \ldots \times T_{n} \rightarrow T \\
& f\left(x_{1}, \ldots, x_{n}\right):=\text { choose } y \in T . F_{x, y}
\end{aligned}
$$

- Function constant f of arity n.
- Type signature $T_{1} \times \ldots \times T_{n} \rightarrow T$.
- Parameters x_{1}, \ldots, x_{n} (variables).
- Result variable y.
- Result condition $F_{x, y}$ (a formula whose free variables occur in x_{1}, \ldots, x_{n}, y).

We thus know $\forall x_{1} \in T_{1}, \ldots, x_{n} \in T_{n} .\left(\exists y \in T . F_{x, y}\right) \Rightarrow$ let $y=f\left(x_{1}, \ldots, x_{n}\right)$ in $F_{x, y}$.

Examples

- Definition: A root of x is some y such that y squared is x (if such a y exists).

$$
\begin{aligned}
& \text { aRoot }: \mathbb{R} \rightarrow \mathbb{R} \\
& a \operatorname{Root}(x):=\text { choose } y \in \mathbb{R} . y^{2}=x
\end{aligned}
$$

- Definition: The root of $x \geq 0$ is that y such that the square of y is x and $y \geq 0$.

$$
\begin{aligned}
& \text { theRoot: } \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \\
& \text { theRoot }(x):=\text { choose } y \in \mathbb{R}_{\geq 0} \cdot y^{2}=x \wedge y \geq 0
\end{aligned}
$$

- Definition: The quotient q of m and $n \neq 0$ is such that $m=n \cdot q+r$ for some $r<n$.

$$
\begin{aligned}
& \text { quotient: } \mathbb{N} \times \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N} \\
& \text { quotient }(m, n):=\text { choose } q \in \mathbb{N} . \exists r \in \mathbb{N} . m=n \cdot q+r \wedge r<n
\end{aligned}
$$

- Definition: The $\operatorname{gcd}(x, y)$ of x, y (not both 0), is the greatest number dividing x and y.

$$
\begin{aligned}
& \operatorname{gcd}:(\mathbb{N} \times \mathbb{N}) \backslash\{(0,0)\} \rightarrow \mathbb{N} \\
& \operatorname{gcd}(x, y):=\operatorname{choose} z \in \mathbb{N} . z|x \wedge z| y \wedge \forall z^{\prime} \in \mathbb{N} \cdot z^{\prime}\left|x \wedge z^{\prime}\right| y \Rightarrow z^{\prime} \leq z
\end{aligned}
$$

Function result need not be uniquely defined (may be even arbitrary).

Predicates versus Functions

A predicate gives rise to functions in two ways.

- A predicate:
isprimefactor $\subseteq \mathbb{N} \times \mathbb{N}$
isprimefactor $(p, n): \Leftrightarrow \operatorname{isprime}(p) \wedge p \mid n$
- An implicitly defined function:
someprimefactor: $\mathbb{N} \rightarrow \mathbb{N}$
someprimefactor $(n):=$ choose $p \in \mathbb{N}$. isprimefactor (p, n)
- An explicitly defined function whose result is a set:

```
allprimefactors: \mathbb{N}->\mathcal{P}(\mathbb{N})
allprimefactors(n):= {p|p\in\mathbb{N}\wedge isprimefactor(p,n)}
```

The preferred style of definition is a matter of taste and purpose.

The Adequacy of Specifications

Given a specification
Input: x where P_{x} Output: y where $Q_{x, y}$
we may ask the following questions:

- Is precondition satisfiable? $\left(\exists x . P_{x}\right)$
\square Otherwise no input is allowed.
- Is precondition not trivial? $\left(\exists x . \neg P_{x}\right)$
\square Otherwise every input is allowed, why then the precondition?
- Is postcondition always satisfiable? $\left(\forall x . P_{x} \Rightarrow \exists y . Q_{x, y}\right)$
\square Otherwise no implementation is legal.
- Is postcondition not always trivial? $\left(\exists x, y . P_{x} \wedge \neg Q_{x, y}\right)$
\square Otherwise every implementation is legal.
- Is result unique? $\left(\forall x, y_{1}, y_{2} . P_{x} \wedge Q_{x, y_{1}} \wedge Q_{x, y_{2}} \Rightarrow y_{1}=y_{2}\right)$
\square Whether this is required, depends on our expectations.

Example: The Problem of Integer Division

Input: $m \in \mathbb{N}, n \in \mathbb{N}$ Output: $q \in \mathbb{N}, r \in \mathbb{N}$ where $m=n \cdot q+r$

- The postcondition is always satisfiable but not trivial.
\square For $m=13, n=5$, e.g., $q=2, r=3$ is legal but $q=2, r=4$ is not.
- But the result is not unique.
\square For $m=13, n=5$, both $q=2, r=3$ and $q=1, r=8$ are legal.
Input: $m \in \mathbb{N}, n \in \mathbb{N}$ Output: $q \in \mathbb{N}, r \in \mathbb{N}$ where $m=n \cdot q+r \wedge r<n$
- Now the postcondition is not always satisfiable.
\square For $m=13, n=0$, no output is legal.
Input: $m \in \mathbb{N}, n \in \mathbb{N}$ where $n \neq 0 \quad$ Output: $q \in \mathbb{N}, r \in \mathbb{N}$ where $m=n \cdot q+r \wedge r<n$
- The precondition is not trival but satisfiable.
$\square m=13, n=0$ is not legal but $m=13, n=5$ is.
- The postcondition is always satisfiable and result is unique.
\square For $m=13, n=5$, only $q=2, r=3$ is legal.

Example: The Problem of Linear Search

Given a finite integer sequence a and an integer x, determine the smallest position p at which x occurs in $a(p=-1$, if x does not occur in $a)$.

Example: $a=[2,3,5,7,5,11], x=5 \sim p=2$
Input: $a \in \mathbb{Z}^{*}, x \in \mathbb{Z}$
Output: $p \in \mathbb{N} \cup\{-1\}$ where
let $n=$ length (a) in
if $\exists p \in \mathbb{N} . p<n \wedge a[p]=x$
then $p<n \wedge a[p]=x \wedge(\forall q \in \mathbb{N} . \underline{q<n \wedge a[q]=x} \Rightarrow p \leq q)$ else $p=-1$

All inputs are legal; a result with the specified property always exists and is uniquely determined.

Example: The Problem of Binary Search

Given a finite integer sequence a sorted in ascending order and an integer x, determine some position p at which x occurs in $a(p=-1$, if x does not occur in a).

Example: $a=[2,3,5,5,5,7,11], x=5 \sim p \in\{2,3,4\}$
Input: $a \in \mathbb{Z}^{*}, x \in \mathbb{Z}$ where
let $n=$ length (a) in $\forall k \in \mathbb{N} . k<n-1 \Rightarrow a[k] \leq a[k+1]$
Output: $p \in \mathbb{N} \cup\{-1\}$ where
if $\exists p \in \mathbb{N} . p<n \wedge a[p]=x$
then $p<n \wedge a[p]=x$ else $p=-1$

Not all inputs are legal; for every legal input, a result with the specified property exists but may not be unique.

Example: The Problem of Sorting

Given a finite integer sequence a, determine that permutation b of a that is sorted in ascending order.

Example: $a=[5,3,7,2,3] \sim b=[2,3,3,5,7]$
Input: $a \in \mathbb{Z}^{*}$

Output: $b \in \mathbb{Z}^{*}$ where

$$
\begin{aligned}
& \text { let } n=\text { length }(a) \text { in } \\
& \text { length }(b)=n \wedge(\forall k \in \mathbb{N} . k<n-1 \Rightarrow b[k] \leq b[k+1]) \wedge \\
& \exists p \in \mathbb{N}^{*} . \operatorname{length}(p)=n \wedge \\
& \quad(\forall k \in \mathbb{N} . k<n \Rightarrow p[k]<n) \wedge \\
& \quad(\forall k 1 \in \mathbb{N}, k 2 \in \mathbb{N} . k 1<n \wedge k 2<n \wedge k 1 \neq k 2 \Rightarrow p[k 1] \neq p[k 2]) \wedge \\
& \quad(\forall k \in \mathbb{N} . k<n \Rightarrow a[k]=b[p[k]])
\end{aligned}
$$

All inputs are legal; the specified result exists and is uniquely determined.

1. Specifying Problems
2. The RISC Algorithm Language (RISCAL)
3. Modeling Computations
4. The Temporal Logic of Actions (TLA)

The RISC Algorithm Language (RISCAL)

- A system for formally modeling mathematical theories and algorithms.
\square Research Institute for Symbolic Computation (RISC), 2016-.
- http://www.risc.jku.at/research/formal/software/RISCAL
\square Implemented in Java with SWT library for the GUI.
- Tested under Linux only; freely available as open source (GPL3).
- A language for the defining mathematical theories and algorithms.
\square A static type system with only finite types (of parameterized sizes).
\square Predicates, explicitly (also recursively) and implicitly def.d functions.
\square Theorems (universally quantified predicates expected to be true).
\square Procedures (also recursively defined).
\square Pre- and post-conditions, invariants, termination measures.
- A framework for evaluating/executing all definitions.
\square Model checking: predicates, functions, theorems, procedures, annotations may be evaluated/executed for all possible inputs.
\square All paths of a non-deterministic execution may be elaborated.
\square The execution/evaluation may be visualized.

The RISC Algorithm Language (RISCAL)

RISCAL divide.txt \&

Using RISCAL

See also the (printed/online) "Tutorial and Reference Manual".

- Press button (or <Ctrl>-s) to save specification.
\square Automatically processes (parses and type-checks) specification.
\square Press button 筑 to re-process specification.
- Choose values for undefined constants in specification.
\square Natural number for val const: \mathbb{N}.
\square Default Value: used if no other value is specified.
\square Other Values: specific values for individual constants.
- Select Operation from menu and then press button ξ.
\square Executes operation for chosen constant values and all possible inputs.
\square Option Silent: result of operation is not printed.
\square Option Nondeterminism: all execution paths are taken.
\square Option Multi-threaded: multiple threads execute different inputs.
\square Press button to abort execution.

Typing Mathematical Symbols

ASCII String	Unicode Character	ASCII String	Unicode Character
Int	\mathbb{Z}	~	\#
Nat	\mathbb{N}	<=	\leq
:=	:=	>=	\geq
true	T	*	.
false	\perp	times	\times
~	ᄀ	\{\}	\emptyset
八	\wedge	intersect	\bigcirc
\/	\checkmark	union	\cup
=>	\Rightarrow	Intersect	\cap
<=>	\Leftrightarrow	Union	\cup
forall	\forall	isin	ϵ
exists	\exists	subseteq	\subseteq
sum	Σ	<<	<
product	Π	>>)

Type the ASCII string and press <Ctrl>-\# to get the Unicode character.

Example: Quotient and Remainder

Given naturals n and m, compute the quotient q and remainder r of n divided by m.

```
// the type of natural numbers less than equal N
val N: N;
type Num = N [N];
// the precondition of the computation
pred pre(n:Num, m:Num) \Leftrightarrowm\not=0;
// the postcondition, first formulation
pred post1(n:Num, m:Num, q:Num, r:Num) \Leftrightarrow
    n = m.q + r ^
    \forall0:Num, r0:Num.
        n = m.q0 + r0 m r s r0;
// the postcondition, second formulation
pred post2(n:Num, m:Num, q:Num, r:Num) \Leftrightarrow
    n = m}\cdot\textrm{q}+\textrm{r}\wedge r<m
```


Example: Quotient and Remainder

// for all inputs that satisfy the precondition
// both formulations are equivalent:
$/ / \forall \mathrm{n}:$ Num, m:Num, $\mathrm{q}: N u m, r: N u m$.
$/ / \operatorname{pre}(n, m) \Rightarrow(\operatorname{post} 1(n, m, q, r) \Leftrightarrow \operatorname{post} 2(n, m, q, r)) ;$
theorem postEquiv(n:Num, m:Num, q:Num, r:Num)
requires pre(n, m);
$\Leftrightarrow \operatorname{post} 1(\mathrm{n}, \mathrm{m}, \mathrm{q}, \mathrm{r}) \Leftrightarrow \operatorname{post2}(\mathrm{n}, \mathrm{m}, \mathrm{q}, \mathrm{r})$;
// we will thus use the simpler formulation from now on
pred post(n:Num, m:Num, q:Num, r:Num) $\Leftrightarrow \operatorname{post2(n,~m,~q,~r);~}$

Check equivalence for all values that satisfy the precondition.

Example: Quotient and Remainder

Choose e.g. $N=5$.

- Switch option Silent off:

Executing postEquiv($\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z})$ with all 1296 inputs.
Ignoring inadmissible inputs...
Run 6 of deterministic function postEquiv($0,1,0,0$):
Result (0 ms) : true
Run 7 of deterministic function postEquiv(1,1,0,0):
Result (0 ms) : true
...
Run 1295 of deterministic function postEquiv(5,5,5,5):
Result (0 ms) : true
Execution completed for ALL inputs (6314 ms , 1080 checked, 216 inadmissible).

- Switch option Silent on:

Executing postEquiv($\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z}$) with all 1296 inputs.
Execution completed for ALL inputs ($244 \mathrm{~ms}, 1080$ checked, 216 inadmissible).
If theorem is false for some input, an error message is displayed.

Example: Quotient and Remainder

Drop precondition from theorem.

```
theorem postEquiv(n:Num, m:Num, q:Num, r:Num) \Leftrightarrow
    // requires pre(n, m);
    post1(n, m, q, r) \Leftrightarrow post2(n, m, q, r);
```

Executing postEquiv $(\mathbb{Z}, \mathbb{Z}, \mathbb{Z}, \mathbb{Z})$ with all 1296 inputs.
Run 0 of deterministic function postEquiv ($0,0,0,0$):
ERROR in execution of postEquiv ($0,0,0,0$) : evaluation of
postEquiv
at line 25 in file divide.txt:
theorem is not true
ERROR encountered in execution.

For $n=0, m=0, q=0, r=0$, the modified theorem is not true.

Visualizing the Formula Evaluation

Select $N=1$ and visualization option "Tree".

Investigate the (pruned) evaluation tree to determine how the truth value of $\varlimsup^{27 / 59}$

Example: Quotient and Remainder

Switch option "Nondeterminism" on.

```
// 1. investigate whether the specified input/output combinations are as desired
fun quotremFun(n:Num, m:Num): Tuple[Num,Num]
    requires pre(n, m);
    ensures post(n, m, result.1, result.2);
= choose q:Num, r:Num with post(n, m, q, r);
Executing quotremFun(\mathbb{Z,}\mathbb{Z}) with all }36\mathrm{ inputs.
Ignoring inadmissible inputs...
Branch 0:6 of nondeterministic function quotremFun(0,1):
Result (0 ms): [0,0]
...
Branch 1:35 of nondeterministic function quotremFun(5,5):
No more results (14 ms).
Execution completed for ALL inputs (413 ms, 30 checked, 6 inadmissible).
```

First validation by inspecting the values determined by output condition (nondeterminism may produce for some inputs multiple outputs).

Example: Quotient and Remainder

// 2. check that some but not all inputs are allowed theorem someInput () $\Leftrightarrow \exists \mathrm{n}:$ Num, m:Num. pre (n, m);

```
theorem notEveryInput() \Leftrightarrow \existsn:Num, m:Num. \negpre(n, m);
```

Executing someInput().
Execution completed (0 ms).
Executing notEveryInput().
Execution completed (0 ms).

A very rough validation of the input condition.

Example: Quotient and Remainder

```
// 3. check whether for all inputs that satisfy the precondition
// there are some outputs that satisfy the postcondition
theorem someOutput(n:Num, m:Num)
    requires pre(n, m);
\Leftrightarrow \existsq:Num, r:Num. post(n, m, q, r);
// 4. check that not every output satisfies the postcondition
theorem notEveryOutput(n:Num, m:Num)
    requires pre(n, m);
\Leftrightarrow \existsq:Num, r:Num. ᄀpost(n, m, q, r);
```

Executing someOutput (\mathbb{Z}, \mathbb{Z}) with all 36 inputs.
Execution completed for ALL inputs ($5 \mathrm{~ms}, 30$ checked, 6 inadmissible).
Executing notEveryOutput (\mathbb{Z}, \mathbb{Z}) with all 36 inputs.
Execution completed for ALL inputs ($5 \mathrm{~ms}, 30$ checked, 6 inadmissible).

A very rough validation of the output condition.

Example: Quotient and Remainder

```
// 5. check that the output is uniquely defined
// (optional, need not generally be the case)
theorem uniqueOutput(n:Num, m:Num)
    requires pre(n, m);
\Leftrightarrow
    \forallq:Num, r:Num. post(n, m, q, r) =>
    q0:Num, r0:Num. post(n, m, q0, r0) }
        q = q0 ^ r = r0;
```

Executing uniqueOutput($\mathbb{Z}, \mathbb{Z})$ with all 36 inputs.
Execution completed for ALL inputs ($18 \mathrm{~ms}, 30$ checked, 6 inadmissible).

The output condition indeed determines the outputs uniquely.

Validating the Specification of an Operation

Select operation quotRemFun and press the button "Show/Hide Tasks".

Automatic generation of those formulas that validate a specification.

Example: Quotient and Remainder

Right-click to print definition of a formula, double-click to check it.

```
For every input, is postcondition true for only one output?
theorem _quotremFun_5_PostUnique(n:Num, m:Num)
requires pre(n, m);
    \Leftrightarrow \forallresult:Tuple[Num,Num] with post(n, m, result.1, result.2).
    (\forall_result:Tuple[Num,Num] with let result = _result in
        post(n, m, result.1, result.2). (result = _result));
Using N=5.
Type checking and translation completed.
Executing _quotremFun_5_PostUnique(\mathbb{Z},\mathbb{Z}) with all 36 inputs.
Execution completed for ALL inputs (7 ms, 30 checked, 6 inadmissible).
```

The output is indeed uniquely defined by the output condition.

Example: Quotient and Remainder

```
// 6. check whether the algorithm satisfies the specification
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]
    requires pre(n, m);
    ensures let q=result.1, r=result.2 in post(n, m, q, r);
{
    var q: Num = 0;
    var r: Num = n;
    while r \geq m do
    {
        r := r-m;
        q := q+1;
    }
    return \langleq,r\rangle;
}
```

Check whether the algorithm satisfies the specification.

Example: Quotient and Remainder

```
Executing quotRemProc(\mathbb{Z},\mathbb{Z}) with all }36\mathrm{ inputs.
Ignoring inadmissible inputs...
Run 6 of deterministic function quotRemProc(0,1):
Result (0 ms): [0,0]
Run 7 of deterministic function quotRemProc(1,1):
Result (0 ms): [1,0]
Run 32 of deterministic function quotRemProc(2,5):
Result (0 ms): [0,2]
Run 33 of deterministic function quotRemProc(3,5):
Result (0 ms): [0,3]
Run 34 of deterministic function quotRemProc (4,5):
Result (0 ms): [0,4]
Run 35 of deterministic function quotRemProc (5,5):
Result (1 ms): [1,0]
Execution completed for ALL inputs (161 ms, 30 checked, 6 inadmissible).
```


A verification of the algorithm by checking all possible executions.

Example: Quotient and Remainder

```
proc quotRemProc(n:Num, m:Num): Tuple[Num,Num]
    requires pre(n, m);
    ensures post(n, m, result.1, result.2);
{
    var q: Num = 0; var r: Num = n;
    while r > m do // error!
    {
        r := r-m; q := q+1;
    }
    return \langleq,r\rangle;
}
```

Executing quotRemProc (\mathbb{Z}, \mathbb{Z}) with all 36 inputs. ERROR in execution of quotRemProc (1,1): evaluation of ensures let $q=r e s u l t .1, r=r e s u l t .2$ in post($n, m, q, r)$; at line 65 in file divide.txt:
postcondition is violated by result $[0,1]$

ERROR encountered in execution.
A falsificaton of an incorrect algorithm.

Example: Sorting an Array

```
val N:Nat; val M:Nat;
type nat = Nat[M]; type array = Array[N,nat]; type index = Nat[N-1];
proc sort(a:array): array
    ensures \foralli:nat. i < N-1 # result[i] \leq result[i+1];
    ensures \existsp:Array[N,index]. (\foralli:index,j:index. i f j = p[i] f p[j]) ^
                            (\foralli:index. a[i] = result[p[i]]);
{
    var b:array = a;
    for var i:Nat[N]:=1; i<N; i:=i+1 do {
        var x:nat := b[i];
        var j:Int[-1,N] := i-1;
        while j \geq 0 ^ b[j] > x do {
            b[j+1] := b[j];
            j := j-1;
        }
        b[j+1] := x;
    }
    return b;
}
```


Example: Sorting an Array

```
Using N=5.
Using M=5.
Type checking and translation completed.
Executing sort(Array[Z]) with all 7776 inputs.
1223 inputs (1223 checked, 0 inadmissible, O ignored)...
2026 inputs (2026 checked, 0 inadmissible, 0 ignored)...
5792 inputs (5792 checked, 0 inadmissible, 0 ignored)...
6118 inputs (6118 checked, 0 inadmissible, 0 ignored)...
6500 inputs (6500 checked, 0 inadmissible, 0 ignored)...
6788 inputs ( }6788\mathrm{ checked, 0 inadmissible, 0 ignored)...
7070 inputs (7070 checked, 0 inadmissible, 0 ignored)...
7354 inputs (7354 checked, O inadmissible, 0 ignored)...
7634 inputs (7634 checked, 0 inadmissible, 0 ignored)...
Execution completed for ALL inputs ( }32606\textrm{ms},7776\mathrm{ checked, O inadmissible).
Not all nondeterministic branches may have been considered.
```


Also this algorithm can be automatically checked.

Model Checking versus Proving

Two fundamental techniques for validation/verification.

- Model checking: processing a semantic model.
\square Fully automatic, no human interaction is required.
\square Completely possible only if the model is finite.
\square State space explosion: "finite" actually means "not too big".
- Proving: constructing a logical deduction.
\square Assumes a sound deduction calculus.
\square Also possible if the model is infinite.
\square Complexity of deduction is independent of size of model.
\square Many properties can be automatically proved (automated reasoners); in general, however, interaction with a human is required (proof assistants).

While verifying the validity of a conjecture generally requires deduction, its invalidity can be often quickly established by checking.

1. Specifying Problems
2. The RISC Algorithm Language (RISCAL)
3. Modeling Computations
4. The Temporal Logic of Actions (TLA)

Computational Systems

Programs are just special cases of "(computational) systems".

- Computational System
\square One or more active components.
\square Deterministic or nondeterministic behavior.
\square May or may not terminate.
- Safety
\square "Nothing bad will ever happen."
\square Partial correctness of programs: for every admissible input, if the program terminates, its output does not violate the output condition.
- Liveness
\square "Something good will eventually happen."
\square Termination of programs: for every input, the program eventually terminates.
General goal is to establish the safety and liveness of computational systems.

Transition Systems

Any computational system can be modelled as a transition system $T=(S, I, R)$.

- State space $S=S_{1} \times \ldots \times S_{n}$: the set of all possible system states.
\square Determined by the possible values of system variables x_{1}, \ldots, x_{n} with values from (finite or infinite) domains S_{1}, \ldots, S_{n}.
- Initial states $I \subseteq S$: the possible starts of the execution of the system.
\square Typically defined by an a predicate I_{x} on the system variables x_{1}, \ldots, x_{n}.
- Transition relation $R \subseteq S \times S$: the possible execution steps.
\square Typically defined by a predicate $R_{x, x^{\prime}}$ between the prestate values x and the poststate values x^{\prime} of the program variables.

Nondeterminism: for some prestate x there may be multiple poststates x^{\prime}.

Example

System $C=(S, I, R)$ with counters x und y which may be independently incremented.

$$
\begin{aligned}
& S:=\mathbb{Z} \times \mathbb{Z} \\
& I(x, y): \Leftrightarrow x=y \wedge y \geq 0 \\
& R\left(\langle x, y\rangle,\left\langle x^{\prime}, y^{\prime}\right\rangle\right): \Leftrightarrow \\
& \quad\left(x^{\prime}=x+1 \wedge y^{\prime}=y\right) \vee \\
& \quad\left(x^{\prime}=x \wedge y^{\prime}=y+1\right)
\end{aligned}
$$

- Infinitely many starting states.

$$
[x=0, y=0],[x=1, y=1],[x=2, y=2], \ldots
$$

- In each state two possibilities.

$$
\begin{aligned}
{[x=2, y=3] } & \rightarrow[x=3, y=3] \\
& \rightarrow[x=2, y=4]
\end{aligned}
$$

A nondeterministic system.

System Runs

Transition system $T=(S, I, R)$.

- System run: (finite or infinite) sequence $s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \ldots$ of states in S.
$\square s_{0}$ is initial: $I\left(s_{0}\right)$.
$\square s_{i} \rightarrow s_{i+1}$ ist a transition: $R\left(s_{0}, s_{1}\right)$.
\square If run stops in s_{n}, then s_{n} has no successor: $\neg R\left(s_{n}, s^{\prime}\right)$, for all $s^{\prime} \in S$.

Example

System $C=(S, I, R)$.

$$
\begin{aligned}
& S:=\mathbb{Z} \times \mathbb{Z} \\
& I(x, y): \Leftrightarrow x=y \wedge y \geq 0 \\
& R\left(\langle x, y\rangle,\left\langle x^{\prime}, y^{\prime}\right\rangle\right): \Leftrightarrow \\
& \quad\left(x^{\prime}=x+1 \wedge y^{\prime}=y\right) \vee \\
& \quad\left(x^{\prime}=x \wedge y^{\prime}=y+1\right)
\end{aligned}
$$

- Safety: $\square(x \geq 0 \wedge y \geq 0)$
\square Both x als y never become negative.
\square True, because every system run has this property.
- Liveness: $\diamond x \geq 1$.
\square Variable x eventually becomes greater equal 1 .
\square False, because this system run does not have this property.

$$
[x=0, y=0] \rightarrow[x=0, y=1] \rightarrow[x=0, y=2] \rightarrow[x=0, y=3] \rightarrow \ldots
$$

Verifying Safety

We only consider the verification of a safety property.
■ $M=\square F$.
\square Verify that formula F is an invariant of system M.

- $M=(S, I, R)$.
$\square I(s): \Leftrightarrow \ldots$
$\square R\left(s, s^{\prime}\right): \Leftrightarrow R_{0}\left(s, s^{\prime}\right) \vee R_{1}\left(s, s^{\prime}\right) \vee \ldots \vee R_{n-1}\left(s, s^{\prime}\right)$.
\square Proof by induction.
$\square \forall s . I(s) \Rightarrow F(s)$.
- F holds in every initial state.
$\square \forall s, s^{\prime} . F(s) \wedge R\left(s, s^{\prime}\right) \Rightarrow F\left(s^{\prime}\right)$.
- Each transition preserves F.
- Reduces to a number of subproofs:

$$
\begin{aligned}
& F(s) \wedge R_{0}\left(s, s^{\prime}\right) \Rightarrow F\left(s^{\prime}\right) \\
& \ldots \\
& F(s) \wedge R_{n-1}\left(s, s^{\prime}\right) \Rightarrow F\left(s^{\prime}\right)
\end{aligned}
$$

1. Specifying Problems
2. The RISC Algorithm Language (RISCAL)
3. Modeling Computations
4. The Temporal Logic of Actions (TLA)

The Temporal Logic of Actions (TLA)

- Leslie Lamport (Microsoft Research since 2001).
\square ACM Turing Award 2013.
- TLA model of a system:

$$
I_{x} \wedge \square[R]_{x} \wedge \mathrm{WF}_{x}(A) \wedge \ldots
$$

\square Initial condition I_{x}.
\square Transition relation $[R]_{x}$:

- $[R]_{x} \equiv\left(R \vee x=x^{\prime}\right)$
- $x=x^{\prime}$: stutter step (nothing changes).
\square Fairness conditions:
- Conjunction of formulas $\mathrm{WF}_{x}(A)$ and/or $\mathrm{SF}_{x}(A)$ for actions A.
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

Example

$$
\begin{aligned}
& X \equiv \wedge x^{\prime}=x+1 \\
& \wedge y^{\prime}=y \\
& Y \equiv \wedge y^{\prime}=y+1 \\
& \wedge x^{\prime}=x \\
& S \equiv \wedge(x=0) \wedge(y=0) \\
& \wedge \square[X \vee Y]_{\langle x, y\rangle} \\
& \wedge \mathrm{WF}_{\langle x, y\rangle}(X) \wedge \mathrm{WF}_{\langle x, y\rangle}(Y) \\
& {[x=0, x=0] \rightarrow[x=1, y=0] \rightarrow[x=1, y=0] \rightarrow[x=1, y=1] \rightarrow \ldots }
\end{aligned}
$$

System is described in a structured way by the logical composition of actions.

TLA is not just a logic.

- TLA+: A formal specification language based on TLA.
\square Values from the theory of sets (no static type system).
Chris Newcombe et al. How Amazon Web Services Uses Formal Methods. Communications of the ACM, vol. 58 no. 4, pages 66-73, April 2015.
https://doi.org/10.1145/2699417
- TLA+ Toolbox: an IDE for various TLA tools.
\square Writing and syntax checking of TLA+ specifications.
\square Pretty printer for generation of $L_{L} T_{E} X$ documents.
\square Translator from the algorithmic language PlusCal to TLA+.
\square Simulation and model checking of TLA+-specifications.
\square Derivation and checking of TLA+ proofs.
http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html

TLA+ Toolbox

Example (Plain Text)

```
EXTENDS Naturals
VARIABLE x,y
I == x = 0 \ y = 0 (* the initial state condition *)
X == /\ x' = x+1 (* increment x *)
        \\ y' = y
Y == /\ x' = x (* increment y *)
    \\ y' = y+1
R == \/ X
    (* increment x or y *)
    \/ Y
var == «x,y» (* the system variables *)
C == I /\ [][R]_var /\ WF_var(X) /\ WF_var(Y) (* the whole specification *)
NotNegative == [](x >= 0 \ y >= 0) (* some properties *)
BecomeOne == <> (x = 1 \\ y = 1)
```


Example ($\mathrm{LA}_{\mathrm{E}} \mathrm{E} \mathrm{X}$)

module Counter

$$
\begin{aligned}
& \text { Extends Naturals } \\
& \text { variable } x, y \\
& \text { the initial state condition } \\
& I \triangleq x=0 \wedge y=0 \\
& X \triangleq \wedge x^{\prime}=x+1 \text { increment } x \\
& \wedge y^{\prime}=y \\
& Y \triangleq \wedge x^{\prime}=x \quad \text { increment } y \\
& \wedge y^{\prime}=y+1 \\
& R \triangleq \vee X \quad \text { increment } x \text { or } y \\
& \vee Y \\
& \text { var } \triangleq\langle x, y\rangle \text { the system variables }
\end{aligned}
$$

the whole specification
$C \triangleq I \wedge \square[R]_{\text {var }} \wedge \mathrm{WF}_{v a r}(X) \wedge \mathrm{WF}_{\text {var }}(Y)$
some properties
NotNegative $\triangleq \square(x \geq 0 \wedge y \geq 0)$
BecomeOne $\triangleq \diamond(x=1 \wedge y=1)$

The TLC Model Checker

Select specification and properties to be checked.

The TLC Model Checker

If necessary, restrict state space to finite subset.

The TLC Model Checker

Check the selected properties.

The TLC Model Checker

In the error case a violating system run is displayed.

Example

MODULE Counter
EXTENDS Naturals, TLC
VARIABLE x, y
$C==I / \backslash[][R / \backslash \operatorname{PrintT}(《 x, y »)] _\operatorname{var} / \backslash W F_{_} \operatorname{var}(X) / \backslash W F _v a r(Y)$

User output may help to validate the model.

The TLC Model Checker

The visited states are printed.

