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Abstract

These lecture notes contain the material on balancing problems. In these notes,
the equations for the motions of a rigid body are derived, the free motion of a rigid
body is described, and the balancing problem for certain mechanisms is explained.

1 The Motion Equations

We define angular velocity, angular momentum, and kinetic energy of a rigid body moving
in 3-space, and we derive the physical laws relating these quantities.
A rigid body is moving in 3-space is modeled as a finite set of points, where each point has
a particular mass; the distance between two points stays fixed throughout the motion.
Let n ∈ N be the number of points and m1, . . . ,mn be the masses; clearly, m1, . . . ,mn

are positive real numbers. The total mass is M :=
∑n

i=1mi. Let p1, . . . , pn ∈ R3 are the
positions of the n points, then the center of mass is the point

pc :=

∑n
i=1mipi
M

.

In this note, we assume that pc = 0 (this simplifies some of the computations below). Let
σ : R3 → R3 be a map that preserves the distance between points. Then σ can be written
as

σ : x 7→ Rx+ a,
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where R ∈ R3×3 is an orthogonal matrix and a ∈ R3 is a vector. Orthogonal matrices
have determinant ±1, and in the case of the motion of a rigid body, the determinant of
the matrix in the map transforming the points at time t0 to the points at time t1 is always
+1 by continuity. All maps σ : R3 → R3, x 7→ Rx + a such that R is orthogonal and
det(R) = 1 are called displacements. The set of displacements form a group, which we
denote by G.
A motion is now a function f : T → G, where T ⊂ R is an interval containing 0, which is
two times continuously differentiable. The value of 0 is equal to the identity. We assume
that f(t) : R3 → R3 is the given by x 7→ R(t)x+ a(t), where a : T → R3 is a vector-valued
function and R : T → SO(3) is a function from T to the group of orthogonal matrices with
determinant 1. The derivative of a at 0 is denoted by V – it is the velocity of the center of
mass. The second derivative of a at 0 is denoted by A – it is the acceleration of the center
of mass. The derivative of R at 0 is skew symmetric, because

0 =
dR(t)R(t)†

dt
|t=0 = R(0)R′(0)† +R′(0)R(0)† = R′(0)† +R′(0).

For any skew symmetric matrix Γ, there is a unique vector γ such that Γx = γ × x for all
x ∈ R3; if Γ = R′(0), then the vector γ is called the angular velocity and denoted by ω.
The velocity of the i-th point at t = 0 is equal to R′(0)pi + a′(0) = ω × pi + V . The total
momentum of the rigid body is

P :=
n∑

i=1

mi(ω × pi + V ) = ω ×
n∑

i=1

mipi +MV = MV,

which is equal to the momentum of a point mass M at the center of mass. If the sum of all
forces exerted to the the i points (also called the total force) is zero, then the momentum
is constant by Newtons second axiom: the center of mass travels with uniform speed in a
constant direction.
In order to define the angular momentum, we have to choose a reference point. For sim-
plicity, we choose the origin, which is already the center of mass at time 0. The angular
momentum of the i-th point is defined as product the cross product of the position vector
with respect to the reference point and the momentum vector. The total angular momen-
tum is

L :=
n∑

i=1

mipi × (ω × pi + V ) =
n∑

i=1

mipi × (ω × pi) +

(
n∑

i=1

mipi

)
× V.

The second summand is zero. The first summand is linear in ω and can therefore be written
as Iω for a suitable matrix I ⊂ R3×3 (please note that this time I is not the unit matrix).
The matrix I is called the moment of inertia. If pi =: (xi, yi, zi), then the contribution of

the i-th point to the moment of inertia is mi

y2i + z2i −xiyi −xizi
−xiyi x2i + z2i −yizi
−xizi −yizi x2i + y2i

. This matrix is
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symmetric and positive semidefinite, hence it follows that I is also symmetric and positive
semidefinite.
If the reference point is not equal to the center of mass, then the second summand in the
line defining L is not zero, but is equal to the cross product of the position vector of the
center of mass and the momentum P .
According to Newton’s axioms, when the rigid body moves then there must be some forces
exerted to the mass points that ensure that the distance are preserved (for instances by
rods or cables). For any two distinct indices i, j, there is a force Fi,j that pulls pi into the
direction of pj. By Newton’s third axiom, Fji = Fij. If there are no other forces, then the
derivative of the angular momentum at 0 is

n∑
i 6=j

pi × Fij =
n∑

i<j

(pi − pj)× Fij = 0.

Therefore the angular momentum is constant if there are no external forces and if the
internal forces between two points have the same direction as the difference vector. If
there are external forces, then the derivative if the angular momentum is called the torque
and denoted by T .
The kinetic energy of the i-th point is equal to mass times square of velocity divided by 2.
The total energy is then

E :=
1

2

n∑
i=1

mi||ω × pi + V ||2 =
1

2

n∑
i=1

mi||ω × pi||2 +
n∑

i=1

mi〈ω × pi | V 〉+
1

2

n∑
i=1

mi||V ||2.

The second summand is equal to 〈ω × (
∑n

i=1mipi) | V 〉 = 0. The third summand is equal
to the kinetic energy of a point mass concentrated in the center of mass. For the first
summand, which is called the rotational energy, we use the general formula ||a× b||2 = 〈a |
b× (a× b)〉 for a, b ∈ R3 (in our case, a = ω and b = pi):

1

2

n∑
i=1

mi||ω × pi + V ||2 =
1

2

n∑
i=1

mi〈ω | pi × (ω × pi)〉 =
1

2
〈ω |

n∑
i=1

mipi × (ω × pi)〉

=
1

2
〈ω | L〉 =

1

2
〈ω | Iω〉

The total energy is preserved when there are no external forces. Newton’s three axioms do
not exclude internal forces that are not gradients, and such forces would in general change
the total energy. However, the conservation of energy may be considered as an additional
axiom for mechanics, motivated by the impossibility of a device that constantly produces
energy.
Here is the summary of the laws of motion of a rigid body whose center of mass is at the
reference point:

P = MV,L = Iω,E =
MV 2

2
+
〈ω, Iω〉

2
.

If two rigid bodies have the same center of mass and the same moment of intertia, then
they move exactly in the same way, provided that the external force and torque is the same
in both cases.
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2 The Free Motion

If a rigid body moves without external force or torque, its angular velocity is in general
not constant. We derive equations for the geometric locus of the angular velocity vector
in the fixed and in the moving coordinate system.
Assume that a rigid body moves without external force or torque. Then the center of mass
oves uniformly with constant speed. Moving the reference frame with the same velocity
compensates that and does not affect the motion equations, hence we may assume, without
loss of generality, that the center of mass remains fixed at the origin. The motion is
descrived by a function R : T → Rn×n as above, i.e., T is an interval containing 0 and R
is two times continuously differentiable, R(0) is the identity, and R(t) is orthogonal for all
t ∈ T . The momentum P is zero. In order to define angular momentum at time t, we
need a skew symmetric matrix related to R′(t). The matrix R′(t) is in general not skew
symmetric, but the matrices R(t)†R′(t) and R′(t)R(t)† are both skew symmetric. Hence
we get two vectors of angular velocity implicitly defined by the two equations

∀p ∈ R3 ∀t ∈ T : ωf (t)×R(t)p = R′(t)p, R(t)(ωm(t)× p) = R′(t)p.

The two angular velocity vectors are related by the equation ωf (t) = R(t)ωm(t). The first
one, ωf (t), expresses angular velocity in a fixed coordinate frame, and the second, ωm(t),
expresses it in a coordinate frame that is attached to the rigid body and moves with it.
The moment of inertia I is constant in the moving coordinate frame, because the vectors pi
are constant in the moving frame. This gives the formula Lm(t) = Iωm(t) for the angular
momentum in the moving frame: the vector itself is constant, but when the coordinate
frame changes then also the coordinates change. On the other hand, the vector Lf =
R(t)Iωf (t) = R(t)IR(t)†ωf (t) is fixed, since this is the angular momentum in the fixed
frame.
The total energy can be computed in both frames. For the fixed frame, we get

E =
1

2
〈ωf (t) | Lf〉.

This is a linear equation for ωf (t), which shows that ωf has values in a plane. However, it
is almost impossible to obtain a second equation for ωf (t), let alone a closed formular for
ωf .
In the moving frame, we get the equation

E =
1

2
〈ωm(t) | Iωm(t)〉,

which is a quadratic equation for ωm. A second quadratic equation is obtained using the
angular momentum. It is not fixed in the moving frame, but its length is independent of
the choice of the frame:

||Iωm(t)||2 = ||Lf ||2.
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In general (if the inertial matrix is not a multiple of the unit matrix), these two equations
are linearly independent, and ωf (t) moves along the common zero set of these two quadratic
equations.
Here is a beautiful animation http://www.ialms.net/sim/3d-rigid-body-simulation/

of the free motion of a rigid body displaying also angular momentum, angular velocity, and
the loci of angular velocity in fixed and moving coordinates.

3 Balancing of Mechanisms

The material below was not yet treated in the lecture.
A mechanism consists of several rigid bodies called links that may or may not be connected
by revolute joints (there exist also other types of joints, but in this note, only revolute joints
appear). All links may move in 3-space. If two links are connected by a joint, then the
relative motion of the second with respect to the first is restricted by a line: in both links,
all points on the line are fixed. If we fix the first link, then the second link can only rotate
around the line, which is also called the joint axes.
The easiest possible nontrivial mechanism consists of two links connected by a joint.
Slightly more general, let n ∈ N. A linkage consisting of n + 1 links L0, . . . , Ln and
joints Jr connecting Lr−1 and Lr ifor r = 1, . . . , n is called an nR-chain. (The “R” specifies
the type of joint, which in our case is always revolute.) For r = 1, . . . , n, the relative
position of Lr with respect to Lr−1 can be specified by a single joint parameter, an angle
[0, 2π). The position of Ln with respect to L0 depends on all joint parameters and can
be computed as a composition of n rotations. 6R-chains are frequently used in robotics,
especially in car manufactury: the joint parameters are controlled by programs such that
the link L6 – which is called hand in robotics – performs a prescribed motion relative to
the fixed base L0 (containing the partially constructed car).
For a fixed nR-chain, the balancing problem is to add masses to the individual links such
that for all possible motions of the mechanism, the position of the center of mass of the
whole mechanism is fixed with respect to the link L0. If an nR-chain is balanced, then every
configuration of the mechanism, i.e. every displacement of the links that is consistent with
the joint restrictions, is in an indifferent equilibrium and does not move away by gravity
forces.
The data needed to solve the balancing problem are the following: for each link, we need the
mass, the position of the rotation axis (two for the middle links, one for the base and one
for the hand) and the position of the center of mass. In addition, we need two assembling
points on each axes. When the mechanism is assembled from its individual links, the lines
representing the same joint must be equal, and also corresponding assembling points must
be equal. (Without specifying the assembling points, it would not be clear which points
of an axes on link i would be equal to which points on the same axes on link Li+1.) It
should be noted that the distance between corresponding assembling points must be equal,
otherwise it is not possible to assemble the linkage. Also, it should it be noted that the
different links have in general different coordinate systems. The relative position of the
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two coordinate system changes when the mechanism moves.
The balancing problem can be recursively solved in the following way: first, add a point
mass to the link Ln that ensures that the center of mass of Ln is located in the joint axis
of Jn. Then replace the link Ln by a point with all its mass concentrated in the center of
mass. Consider this point mass as attached to Ln−1 and remove the last link Ln. If n = 1,
then the mechanism is now balanced; otherwise, balance the (n− 1)R chain consisting of
the links L0, . . . , Ln−1 (where the last link has been changed by the previous procedure).
Every solution of the balancing problem of an nR-chain can be obtained by the method
above: if the center of mass of Ln would not lie on the joint axis of Jn, then a rotation
of Ln around Ln−1, with L0, . . . , Ln−1 fixed, would be a possible motion that changes the
position of the whole center of mass. Hence the center of mass of Ln of a balanced nR-chain
has to lie on the joint axis. But then, the balancing problem for the nR-chain is equivalent
to the balancing problem of the (n− 1)R-chain.
If we apply the construction to a mechanism that is already balanced, then no masses are
added. This observation allows to decide algorithmically if a given nR chain is balanced:
just run the balancing algorithm and check if masses are added or not.
We now define another type of mechanism, the nR-loop. It consists of n links L1, . . . , Ln

that are cyclically connected by joints: J1 connects Ln and L1, J2 connects L1 and L2

etc. It can also be constructed from an nR-chain by fixing the relative position of Ln with
respect to L0 in an nR-chain (e.g. when the robot hand firmly grips a part of the car).
The balancing problem for nR-loops is defined similar as for the nR-chain: to add masses
to the links such that the center of mass is fixed relative to L1 for all possible motions in
the configuration space. By temporily breaking a joint, say Jk, we can construct soluton
by balancing the (k− 2)-chain consisting of links L1, L2, . . . , Lk−1 and the the (n− k+ 1)-
chain consisting of links L1, Ln, Ln−1, . . . , Lk. So the balancing problem for loops is always
solvable.
However, in general, there are more solutions than those obtained by breaking the loop
into two chains. Also, if we start with an algorithm that is already balanced, the two
chains are in general not balanced, so our construction is adding masses. We cannot use
the construction to decide if a given algorithm is already balanced.
Another approach is to try to distribute the masses to the joint axes. For the moment,
let us consider just a single link. Let us also assume that the tw axes are skew. Here is a
useful geometric lemma.

Lemma 3.1. Let L1, L2 be skew lines. Let p be a point which is not in L1 nor in L2, such
that the line parallel to L1 through p does not meet L2 and the line parallel to L2 through
p does not meet L1. Then there is a unique line through p meeting both L1 and L2.

The proof is left as an exercise. – If the conditions in the Lemma are fulfilled for the two
rotation axes and the center of mass, then the center of mass pc can (uniquely!) be written
in the form

pc =
m1p1 +m2p2

M
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with m1,m2 are real summing to the mass M of the link, and p1 is on the first axis, and
p2 is on the second axis. Note that m1,m2 could be negative!
It is clear that the mechanism is balanced if the contributions by mass distribution to a
any joint axis that is actually moving, that is, all joint axis except the two attached to the
base link, compensate each other. For any such axes, there are two contributions from the
two attache links. “Compensation of each other” means that the two points are equal and
the two virtual masses (i.e., the m1 and m2 in the above formula) sum up to zero.
The above method gives a sufficient condition for balancing. For most known nR-linkages,
the condition “after distributing to the axes, all contributions to moving joint axes com-
ponensate each other” is also necessary.
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