PARALLEL COMPUTING

Algorithms and Complexity

Armin Biere March 12, 2019

JOHANNES KEPLER UNIVERSITY LINZ

Slow-Down in Parallel SAT

table 2 of

Parallel Multithreaded Satisfiability Solver: Design and Implementation. Yulik Feldman, Nachum Dershowitz, Ziyad Hanna http://dx.doi.org/10.1016/j.entcs.2004.10.020

- paper is inconclusive about the reason for slow-down
- probably more threads work on useless sub-tasks
- sharing clauses caching sub-computation increases pressure on memory system
- maybe search space splitting was not a good idea (guiding path)

Low Speedup in Parallel SAT

slide 4 of (video 3:30)

http://www.birs.ca/events/2014/5-day-workshops/14w5101/videos/watch/ 201401221154-Sabharwal.html

■ sequential SAT algorithms produce proofs of large depth (= *span*)

■ so need new algorithms which produce low depth proofs

Memory System is Good Enough

Martin Aigner, Armin Biere, Christoph Kirsch, Aina Niemetz, Mathias Preiner. Analysis of Portfolio-Style Parallel SAT Solving on Current Multi-Core Architectures. In Proc. Intl. Workshop on Pragmatics of SAT (POS'13), EPiC Series in Computing, vol. 29, 28-40, EasyChair 2014. http://fmv.jku.at/papers/AignerBiereKirschNiemetzPreiner-POS13.pdf

- largest speed-up obtained by portfolio approach
 - □ run different search strategies in parallel
 - □ if one terminates stop all
 - $\hfill\square$ in practice share some important learned clauses caching sub-computations
- slow-down due to memory system?
 - □ since memory system (memory / caches / bus) are shared in multi-core systems
 - □ slow-down not too bad (particularly for solvers with small working set)
 - even though considered memory-bound (but random access)
 - $\hfill\square$ waiting time for memory to arrive overlaps

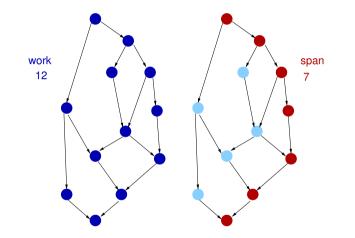
Clever Splitting

Marijn Heule, Oliver Kullmann, Siert Wieringa, Armin Biere. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads. Haifa Verification Conference 2011: 50-65, Springer 2012 http://dx.doi.org/10.1007/978-3-642-34188-5_8

Marijn J.H. Heule, Oliver Kullmann, and Victor Marek Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer. SAT 2016, 196-211, Springer 2016 http://dx.doi.org/10.1007/978-3-319-40970-2_15

Everything is Bigger in Texas https://www.cs.utexas.edu/~marijn/ptn/ JKU CS Colloquium 22. June 2016

Work and Span



Amdahls Law with Work and Span

T = work = sequential time T_p = wall-clock time p CPUs T_{∞} = wall-clock time ∞ CPUs

Speedup $S_P = T/T_P$

span critical path (also called "makespan" in the context of scheduling)

f fraction of sequential work, thus f = span/work

simplified Amdahl's law in terms of *work* and *span*: $S_p \leq 1/f = work/span$

Reduce *span* as much as possible:

- keep sequential blocks short!
- keep sequential dependencies short!

 \Rightarrow fine grained locking is evil

 \Rightarrow (non-logarithmic) loops are evil

Pebble Games

Given a directed acyclic graph with one sink.

Nodes of the graph have a pebble or not.

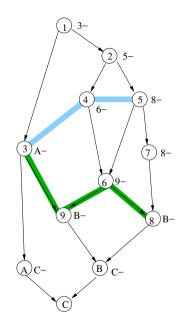
One step can either ...

- ... remove a pebble from a node ...
- ... or add a new pebble to a node without one, but only if all its predecessor have a pebble.

Goal is to only have a pebble on the sink node.

What is the smallest maximum number of pebbles needed?

common concept in complexity theory assuming intermediate results have to be stored relates to smallest *p* needed to reach maximum speed-up this version (black pebble game) actually only gives space bounds



Sum

compute sum $\sum_{i=1}^{n} x_i$ for *n* numbers x_i in parallel

sequential

$$\Box \ y_0 = 0, \quad y_{i+1} = y_i + x_i \text{ for } i = 1 \dots n-1$$

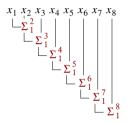
$$\square$$
 work = $T = \mathcal{O}(n)$ ($n - 1$ additions)

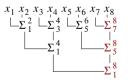
 $\Box \ span = \mathcal{O}(n) \ \text{too}$

- $\hfill\square$ since y_{i+1} depends on all previous y_j with $j\leq i$
- \Box thus no speed-up $S_p = \mathcal{O}(1)$

parallel

- □ **associativity** allows to regroup computation
- $\square work = \mathcal{O}(n)$ remains the same
- $\Box \ span = \mathcal{O}(\log n)$ reduces exponentially
- \Box speed-up not ideal but $S_n = \mathcal{O}(n/\log n)$
- $\hfill\square$ note p>n does not make sense





Prefix / Scan

compute all sums $s_j = \sum_{i=1}^{j} x_i$ for all $j = 1 \dots n$ and again *n* numbers x_i in parallel

sequential version as in previous slide

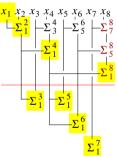
parallel version needs a second depth $\mathcal{O}(\log n)$ pass

works even "in place" (first pass overwrites original x_i)

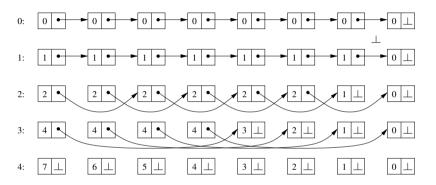
but actual "wiring" complicated

still
$$span = \mathcal{O}(\log n)$$

basic algorithmic idea for many "parallel" algorithms (propagate and generate adders with prefix trees instead of ripple carry adders)



List Ranking / Pointer Jumping



determine distance to head of list:

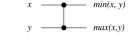
as long there is *i* with $next[i] \neq \bot$: val[i] += val[next[i]]next[i] = next[next[i]]

Sorting Networks

 \blacksquare circuits for sorting fixed number *n* of inputs

 \Box basic "gate" compare-and-swap:

 $cmpswap(x, y) \coloneqq (min(x, y), max(x, y))$



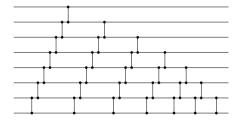
□ interesting challenge to get smallest sorting network

for n = 11 size only known to be between 33 and 35 compare-and-swap operations

zero-one principle

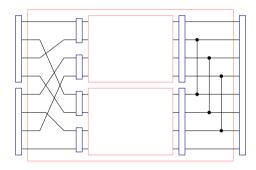
- □ correctness of sorting network (it sorts!) ...
- $\hfill\square$ \ldots only requires sorting 0 and 1 inputs (bits) \ldots
- $\hfill\square$ \ldots as long only compare-and-swap is used.
- asymptotic complexity of algorithms
 - □ examples: Bitonic Sorting, Batcher Odd-Even Mergesort
 - \Box with $span = \mathcal{O}(\log^2 n)$
 - \Box with $work = \mathcal{O}(n \cdot \log^2 n) = T_1$
 - \Box but sequential time $T = \mathcal{O}(n \cdot \log n)$
 - \square maximum absolute speed-up $S_n = \mathcal{O}(n/\log n)$

Bubble Sort Example



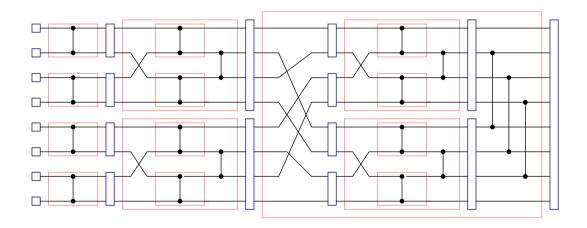
- top-most i sorted after i phases
- lowest value only sorted after n − 1 compare-and-swaps
- $work = \mathcal{O}(n^2)$
- $\blacksquare span = \mathcal{O}(n)$
- looks like perfect speedup S_n = O(n) w.r.t. (bad) sequential algorithm
- however, if we compare against Quicksort $T = O(n \cdot \log n)$ we only get $S_n = O(\frac{n \cdot \log n}{n}) = O(\log n) < O(n/\log n)$

Batcher Odd-Even Mergesort



- basically as mergesort
 - □ split input into two parts . . .
 - \Box ... sort parts recursively ...
 - $\hfill\square$. . . merge sorted sequence.
- example: recursion for n = 8
 - outer block takes two sorted sequences of size 4 each
 - each inner block takes two sorted sequences of size 2 each
 - \Box outer input sequences need to be sorted too

Batcher Odd-Even Mergesort



NC – Nick's Class

f(n) polylogarithmic *iff* exists constant c such that $f(n) = O(\log^c n)$

NC is set of decision problems

... which can be decided in polylogarithmic time ...

... on a parallel computer with polynomial many processors, e.g., ...

... exists constant c such that $p = \mathcal{O}(n^k)$.

NC^c requires (parallel) computation time (span) in $\mathcal{O}(\log^c n)$

 $NC = \bigcup NC^c$

L, NL, AC

L is set of decision problems solvable in logarithmic space determistically

NL is set of decision problems with logarithmic space non-determistically

NC = AC is the set of decision problems with logarithmic circuit complexity, i.e., each input of size n can be decided by polynomial circuit with logarithmic depth in n, made of gates with bounded (NC) or unbounded (AC) number of inputs

as before define NC^c and AC^c requiring $O(\log^c n)$ depth (layers)

P Completeness

 $\mathsf{NC}^1 \,\subseteq\, \mathsf{L} \,\subseteq\, \mathsf{NL} \,\subseteq\, \mathsf{AC}^1 \,\subseteq\, \mathsf{NC}^2 \,\subseteq\, \mathsf{AC}^2 \,\subseteq\, \mathsf{NC}^3 \,\subseteq\, \cdots \,\subseteq\, \mathsf{NC} \,=\, \mathsf{AC} \,\subseteq\, \mathsf{P}$

using "logarithmic" reductions

it is commonly believed that $NC \neq P$

accordingly P-hard problems are supposed to be NOT "parallelizable"

similar to the common belief that $P \neq NP$

Circuit Evaluation Problem

Given a boolean circuit with one output, and an evaluation to its inputs.

Evaluate the circuit and determine its output value for that input assignment.

This problem (deciding whether output yields one) is P-complete and thus considered **not** to be parallelizable.

Thus evaluating a function can **not** be done "effectively" in parallel.

One step of simulation or constraint propagation are **not** parallelizable! (?)