## Exercise Sheet 2

To be submitted by email to manuel@kauers.de until September 2018.

You are encouraged to use computer algebra systems for solving the exercises below. You may submit a transcript of your session as (part of) your solution.

Task 1 Find all hyperexponential solutions of the following differential equation:

$$
2(x-1) x\left(2 x^{2}+x-2\right) f^{\prime \prime}(x)+\left(4 x^{4}-3 x^{2}-8 x+8\right) f^{\prime}(x)-\left(2 x^{3}+x^{2}-x-4\right) f(x)=0
$$

Task 2 It was shown in class that $V\left(\operatorname{lclm}\left(L_{1}, L_{2}\right)\right) \supseteq V\left(L_{1}\right)+V\left(L_{2}\right)$. Construct a counterexample for the opposite inclusion.
Hint: Choose $\mathcal{F}$ so that it contains a certain linear combination of two solutions of $L_{1}, L_{2}$ but not the solutions themselves.

Task 3 Let $\mathbb{O}=K\left[\partial_{x}, \partial_{y}\right]$, and let $\mathcal{F}$ be an $\mathbb{O}$-module. Let $f \in \mathcal{F}$ be D-finite and $P \in \mathbb{O}$. Show that $\operatorname{dim}_{K} \mathbb{O} / \operatorname{ann}(P \cdot f) \leq \operatorname{dim}_{K} \mathbb{O} / \operatorname{ann}(f)$.
Hint: Consider what happens when you try to compute a Gröbner basis of $\operatorname{ann}(P \cdot f)$ from a Gröbner basis of ann $(f)$ using FGLM.

Task 4 a) Let $f=\frac{x+y}{x^{2}+x y+y^{3}} \in C(x, y)$. Construct $P \in C(x)\left[D_{x}\right] \backslash\{0\}$ and $Q \in C(x, y)\left[D_{x}, D_{y}\right]$ such that $\left(P-D_{y} Q\right) \cdot f=0$ by executing one of the creative telescoping algorithms from the lecture step by step.
b) Using the discrete version of creative telescoping, prove the identity

$$
\sum_{k}(-1)^{k}\binom{2 n}{n+k}^{3}=\frac{(3 n)!}{n!^{3}}
$$

In this case, you may use a software package for finding suitable $P$ and $Q$. The task consists in verifying that they are correct, and turning them into a rigorous proof of the identity.

