Multiple Correspondence Analysis

Hervé Abdi! & Dominique Valentin

1 Overview

Multiple correspondence analysis (MCA) is an extension of corre-
spondence analysis (CA) which allows one to analyze the pattern of
relationships of several categorical dependent variables. As such,
it can also be seen as a generalization of principal component anal-
ysis when the variables to be analyzed are categorical instead of
quantitative. Because MCA has been (re)discovered many times,
equivalent methods are known under several different names such
as optimal scaling, optimal or appropriate scoring, dual scaling,
homogeneity analysis, scalogram analysis, and quantification me-
thod.

Technically MCA is obtained by using a standard correspon-
dence analysis on an indicator matrix (i.e., a matrix whose entries
are 0 or 1). The percentages of explained variance need to be cor-
rected, and the correspondence analysis interpretation of inter-
point distances needs to be adapted.
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2 When to use it

McaA is used to analyze a set of observations described by a set of
nominal variables. Each nominal variable comprises several lev-
els, and each of these levels is coded as a binary variable. For ex-
ample gender, (F vs. M) is one nominal variable with two levels.
The pattern for a male respondent will be 0 1 and 1 0 for a female.
The complete data table is composed of binary columns with one
and only one column taking the value “1” per nominal variable. .

MCA can also accommodate quantitative variables by recod-
ing them as “bins.” For example, a score with a range of -5 to +5
could be recoded as a nominal variable with three levels: less than
0, equal to 0, or more than 0. With this schema, a value of 3 will be
expressed by the pattern 0 0 1. The coding schema of McA implies
that each row has the same total, which for cA implies that each
row has the same mass.

3 Anexample

We illustrate the method with an example from wine testing. Sup-
pose that we want to evaluate the effect of the oak species on barrel-
aged red Burgundy wines. First, we aged wine coming from the
same harvest of Pinot Noir in six different barrels made with two
types of oak. Wines 1, 5, and 6 were aged with the first type of
oak, whereas wines 2, 3, and 4 were aged with the second. Next,
we asked each of three wine experts to choose from two to five
variables to describe the wines. For each wine and for each vari-
able, the expert was asked to rate the intensity. The answer given
by the expert was coded either as a binary answer (i.e., fruity vs.
non-fruity) or as a ternary answer (i.e., no vanilla, a bit of vanilla,
clear smell of vanilla). Each binary answer is represented by 2 bi-
nary columns (e.g., the answer “fruity” is represented by the pat-
tern 1 0 and “non-fruity” is 0 1). A ternary answer is represented
by 3 binary columns (i.e., the answer “some vanilla” is represented
by the pattern 0 1 0). The results are presented in Table 1 (the same
data are used to illustrate STATIS and Multiple factor analysis, see
the respective entries). The goal of the analysis is twofold. First
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we want to obtain a typology of the wines and second we want to
know if there is an agreement between the scales used by the ex-
perts. We will use the type of type of oak as a supplementary (or
illustrative) variable to be projected on the analysis after the fact.
Also after the testing of the six wines was performed, an unknown
bottle of Pinot Noir was found and tested by the wine testers. This
wine will be used as a supplementary observation. For this wine,
when an expert was not sure of how to use a descriptor, a pattern
of response such .5 .5 was used to represent the answer.

4 Notations

There are K nominal variables, each nominal variable has J; lev-
els and the sum of the Ji is equal to J. There are I observations.
The I x J indicator matrix is denoted X. Performing CA on the in-
dicator matrix will provide two sets of factor scores: one for the
rows and one for the columns. These factor scores are, in gen-
eral scaled such that their variance is equal to their corresponding
eigenvalue (some versions of CA compute row factor scores nor-
malized to unity).

The grand total of the table is noted N, and the first step of
the analysis is to compute the probability matrix Z = N'X. We
denote r the vector of the row totals of Z, (i.e., r = Z1, with 1 being
a conformable vector of 1’s) ¢ the vector of the columns totals, and
D, = diag{c}, D, = diag{r}. The factor scores are obtained from the
following singular value decomposition:

_1 _1
D;? (Z—rcT)Dc2 =PAQ” . 1)

(A is the diagonal matrix of the singular values, and A = A? is the
matrix of the eigenvalues). The row and (respectively) columns
factor scores are obtained as

_1 _1
F=D,?PA and G=D_2QA. )

The squared (y?) distance from the rows and columns to their re-
spective barycenter are obtained as

d, = diag{FFT} and  do= diag{GGT} . 3)
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The squared cosine between row i and factor ¢ and column j and
factor ¢ are obtained respectively as:
2
i 8j
, Jjil
Oj¢= 5 and 0]',[ = 5 (4)

T,i ¢ j

(with df} » and df’ j» being respectively the i-th element of d and
the j-th element of d.). Squared cosines help locating the factors
important for a given observation or variable.
The contribution of row i to factor ¢ and of column j to factor
¢ are obtained respectively as:
rifi Ci& e
P and tiv= P
(where r; and c; are elements of, respectively, r and c). Contribu-
tions help locating the observations or variables important for a
given factor.
Supplementary or illustrative elements can be projected onto
the factors using the so called transition formula. Specifically, let

T

ig,p being an illustrative row and js,p being an illustrative column

to be projected. Their coordinates fs,, and gs,p are obtained as:

liv= (5)

fsup = (i;lpl) i;rquA_l and gsup = (];I;lpl)

1
jepFAT . (6)

sup
sure that the sum of the elements of isyp or jsup is equal to one, if
this is already the case, these terms are superfluous].

Performing CA on the indicator matrix will provide factor scores
for the rows and the columns. The factor scores given by a CA pro-
gram will need, however to be re-scaled for MCA, as explained in
the next section.

The J x J table obtained as B = X" X is called the Burt matrix
associated to X. This table is important in MCA because using CA
on the Burt matrix gives the same factors as the analysis of X but
is often computationally easier. But the Burt matrix also plays an
important theoretical role because the eigenvalues obtained from
its analysis give a better approximation of the inertia explained by
the factors than the eigenvalues of X.

-1 -1
[note that the scalar terms (iT 1) and (j;rupl) are used to in-
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5 Eigenvalue correction for multiple corre-
spondence analysis

McaA codes data by creating several binary columns for each vari-
able with the constraint that one and only one of the columns gets
the value 1. This coding schema creates artificial additional di-
mensions because one categorical variable is coded with several
columns. As a consequence, the inertia (i.e., variance) of the so-
lution space is artificially inflated and therefore the percentage of
inertia explained by the first dimension is severely underestimated.
In fact, it can be shown that all the factors with an eigenvalue less
or equal to I% simply code these additional dimensions (K = 10 in
our example).

Two corrections formulas are often used, the first one is due
to Benzécri (1979), the second one to Greenacre (1993). These
formulas take into account that the eigenvalues smaller than I%
are coding for the extra dimensions and that McCA is equivalent to
the analysis of the Burt matrix whose eigenvalues are equal to the
squared eigenvalues of the analysis of X. Specifically, if we denote
by A, the eigenvalues obtained from the analysis of the indicator
matrix, then the corrected eigenvalues, denoted A are obtained as

2
(—K )(ﬂ(—i)] if/1[>l
K-1 K K

C/l[ = . (7)

1
0 ifly<—
K

Using this formula gives a better estimate of the inertia, extracted
by each eigenvalue.

Traditionally, the percentages of inertia are computed by di-
viding each eigenvalue by the sum of the eigenvalues, and this ap-
proach could be used here also. However, it will give an optimistic
estimation of the percentage of inertia. A better estimation of the
inertia has been proposed by Greenacre (1993) who suggested in-
stead to evaluate the percentage of inertia relative to the average
inertia of the off-diagonal blocks of the Burt matrix. This average
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inertia, denoted # can be computed as

J-k\*
) @®)

— K
I =— Y B —
K-1" (; (TTK
According to this approach, the percentage of inertia would be ob-
tained by the ratio

CA/

Zc/lé .

)

A
7. = = instead of
54

6 Interpreting MCA

As with CA, the interpretation in MCA is often based upon proxim-
ities between points in a low-dimensional map (i.e., two or three
dimensions). As well as for CA, proximities are meaningful only
between points from the same set (i.e., rows with rows, columns
with columns). Specifically, when two row points are close to each
other they tend to select the same levels of the nominal variables.
For the proximity between variables we need to distinguish two
cases. First, the proximity between levels of different nominal vari-
ables means that these levels tend to appear together in the obser-
vations. Second, because the levels of the same nominal variable
cannot occur together, we need a different type of interpretation
for this case. Here the proximity between levels means that the
groups of observations associated with these two levels are them-
selves similar.

6.1 The example

Table 2 lists the corrected eigenvalues and proportion of explained
inertia obtained with the Benzécri/Greenacre correction formula.
Tables 3 and 4 give the corrected factor scores, cosines, and con-
tributions for the rows and columns of Table 1. Figure 1 displays
the projections of the rows and the columns. We have separated
these two sets, but, because the projections have the same vari-
ance, these two graphs could be displayed together (as long as one



H. Abdi & D. Valentin: Multiple Correspondence Analysis

- £€e €8 €8 €8 £€e €8 [4
- 1c1 c0¢ 221 c0c Icl LLT 1
0001 x suonnqriuoy) A

96 [40) 10 10 10 [40) 10 [4
70’ v (VA 9 (VA v 9 1
sou1s0n) paivnbg A

91'0— 91'0— 80°0 80°0 80°0 91'0— 80°0 I €IcCIo ¢
€00 12°0 ¢6°0 98'0— ¢6'0— 1.°0— 98'0 8G 1700L 1
$21008 1010V 29 v? o

JOUM  9BUIM  GRUIA P RUM €U T RUA T RU

"panodau aJe si010e)
om] 1541 3yl AjuQ -"uonensssqo Aiejuswsajddns e si (; suipy) suim A1s1sAw sy | D1eIl Ul S4B S90S dAIle3au 0]
Sulpuodsa.100 SUOIINGLIUOY) “B|NWIOJ 2J0BUDAIL) /11d9ZUSg Juisn Pa1daJiod e eijsul paule|dxs jo suoijiodoad
pue sonjeAuslia ay| °(19S-J) SUOIIBAISSQO Y] JOJ SUOIINGLIIUOD PUB ‘S3UISOD paJenbs ‘sa10ds 10104 i€ S[qRL



H. Abdi & D. Valentin: Multiple Correspondence Analysis

A._\ pue ¢ ss|qe] wouj

suoidafoid) “(A1jiqepess ssestoul 01 panow Ajpydijs usaq sney sjuiod uoirdsfosd sy1) “syuswspe Asejusws|ddns
e g yeQ pue T 3eQ ‘(sennoalpe “a'7) suwnjod :39s [ 9y (q) ‘uswse Aejuswsjddns e si ; suim ‘(ssuim “a7)
SmoJ 3135 J 3y (B) "B|nwIoj 240BUSDIL) /11D9ZUSE YIM Pa1daJI0d usaq aAey (1) eisul paulejdxs jo uoijiodoid
pue (y) senjeAaus8is sy ‘suoisuswip g 1Sl 3yl uo suoidsfoid ‘siskjeuy souspuodsaiio?) sjdiniy :T aIn3Lg

q

O-POOM
A=y ATRIEA U-4ini
A=jINI4 U-88}J0D A-o80D U-}Ini4
-0 WHYV _u-isung A-oung WHW ©
< per-e O O n o O
TUOWBU 06 >\/T500w_ A=4inig u—ni |+wmmum_o\w%00>>
B 'V o-poom p-poon' V H
O-D|IUOA O-D[IIUOA
\
yjsle) cHedxy @ czuedxy [l LHedx3 W

Xumm =T1
0L =Ty

e

B

HM@

%T =21

10 =2\

3
3%

10



%)
or—
Z.
=
o
< - - 0 0 0 0 0 0 0 0 €8 £€¢ €8 0 0 0 0 0 0 €8 £€¢ €8 0 0 4
w - - 8¢ 8¢ 8¢ 89 9 9 86 8¢ w0 44 8G 8¢ 8G 89 8¢ 89 w0 44 8¢ 8¢ 1
m 000T x suoynqLIU0y qd
o
m 00" 00 00" 00 00" 00 00" 00" 00" 00 c0° 90" <O 00" 00 00" 00 00" 00 c0° 90" <O 00" 00 4
Q. 00°'T 00'T 18 18 8" 18 80" 80" 18 I8 Ly 000 LV 18" 18" 8 18 18" 18 LV 000 LY 18" I8 !
72}
L sau1soy) paivnbg q
—
nw 00" 00 00" 00 00" 00 00" 00" 00" 00 81" G€— 8I' 00" 00 00" 00 00" 00 81" GE&'— 8I 00 000 T €¢I0" ¢
) 06— 06 06" 06'— 06" 06— 8¢'— 8¢ 06" 06— L6 000 L6'— 06 06— 06— 06 06 06'— L6 00" L6'— 06— 06" 89 ¥00.L" I
]
f=r $2.1098 10100 % v A
=
=
W 2 1 u A u A u A u A < 2 1 u A u A u A I 2 1 u A

eO Apoom Ionngq Amy Apoom ur[IiueA paiseol may 991300 Apoom Ay
o pa1

¢ 1radxyg 2 1adxg 1 11adxg

‘sa|qenien Aiequswsjddns sue g pue T 3e(Q "dI|e} ul SJe S340S dAIje3au
01 Suipuodss.1400 SUOIINGLIUOY) "BNWLIOJ 940BUIRIL) /11D9ZUDg JuIsn Pa1daJi0d USR] SABY BILISUl Jo sa8ejusdiad
pue sonjeausdis ay| (195-/) S9|qeleA 3y] JOJ SY] JOJ SUOIINGIIIUOD PUE ‘S3UISOD paJenbs ‘s910s 10104 1 S[qRL

H. Abdi & D. Valentin

11



H. Abdi & D. Valentin: Multiple Correspondence Analysis

keeps in mind that distances between point are meaningful only
within the same set). The analysis is essentially uni-dimensional,
with the wines 2, 3, and 4 being clustered on the negative side of
the factors and wines 1,5, and 6 on the positive side. The sup-
plementary wine does not seem to belong to either clusters. The
analysis of the columns shows that the negative side of the factor
is characterized as being non fruity, non-woody and coffee by Ex-
pert 1, roasted, non fruity, low in vanilla and woody for Expert 2,
and buttery and woody for Expert 3. The positive side, here gives
the reverse pattern. The supplementary elements indicate that the
negative side is correlated with the second type of oak whereas the
positive side is correlated with the first type of oak.

7 Alternatives to MCA

Because the interpretation of MCA is more delicate than simple
CA, several approaches have been suggested to offer the simplic-
ity of interpretation of CA for indicator matrices. One approach
is to use a different metric than )(2, the most attractive alterna-
tive being the Hellinger distance (see entry on distances and Es-
cofier, 1978; Rao, 1994). Another approach, called joint correspon-
dence analysis, fits only the off-diagonal tables of the Burt matrix
(see Greenacre, 1993), and can be interpreted as a factor analytic
model.
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