Übungsblatt 10

Besprechung am **04.06.2018**

Aufgabe 1 Sei M der von den Spalten von

$$A = \begin{pmatrix} -5 & 1 & 2 \\ -2 & 10 & -4 \\ -2 & -2 & 2 \end{pmatrix}$$

erzeugte \mathbb{Z} -Untermodul von \mathbb{Z}^3 .

- a) Berechnen Sie die Smith-Normalform S von A und unimodulare Matrizen U, V, so dass UAV = S.
- b) Stellen Sie \mathbb{Z}^3/M als direkte Summe eines freien Moduls und eines Torsionsmoduls dar.

Aufgabe 2 Sei $A \in \mathbb{Z}^{n \times m}$ eine Matrix über \mathbb{Z} und $S \in \mathbb{Z}^{n \times m}$ die Smith-Normalform von A mit Diagonaleinträgen $s_1, \ldots, s_n \in \mathbb{N}$. Zeigen Sie, dass dann

$$s_1 = \gcd(a_{i,j}, i = 1, \dots, n, j = 1, \dots, m)$$

gilt. Verwenden Sie dazu, dass $\langle b_1, \ldots, b_k \rangle = \langle \gcd(b_1, \ldots, b_k) \rangle$ für beliebige $b_1, \ldots, b_k \in \mathbb{Z}$ gilt.

Aufgabe 3 Zeigen Sie, dass sich jede unimodulare Matrix über \mathbb{Z} als Produkt von unimodularen Elementarmatrizen (über \mathbb{Q}) schreiben lässt. Betrachten Sie dazu zunächst 2×2 -Matrizen wie im Beweis der Existenz der Smith-Normalform (Satz 135).

Aufgabe 4 Sei

$$L = \langle \begin{pmatrix} 25 \\ -15 \\ 2 \end{pmatrix}, \begin{pmatrix} 10 \\ -9 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 8 \\ 4 \end{pmatrix} \rangle \subseteq \mathbb{Z}^3.$$

Versuchen Sie, die angegebene Basis in eine reduzierte Basis zu überführen, und begründen Sie, warum Ihre Basis reduziert ist. Ist das Ergebnis eindeutig bestimmt?

Aufgabe 5 a) Runden Sie 0.764705882 zu einer rationalen Zahl.

- b) Die Zahl $x \approx \xi = -0.381966$ ist eine Lösung einer kubischen Gleichung. Finden Sie diese Gleichung. Ist x auch die Lösung einer quadratischen Gleichung?
- c) Sei $\gamma = \lim_{n \to \infty} (\sum_{k=1}^n \frac{1}{k} \log(n)) \approx 0.577216$ die Eulersche Konstante. Es ist nicht bekannt, ob $\gamma \in \mathbb{Q}$ gilt. Zeigen Sie: Wenn γ eine rationale Zahl ist, dann haben Zähler oder Nenner mindestens 50 Ziffern.

Hinweis: In Mathematica können Sie mit N[EulerGamma, n] die ersten n Nachkommastellen von γ berechnen. Sie dürfen ohne Beweis annehmen, dass diese Ziffern stimmen.