Übungsblatt 9

Besprechung am 28.05.2018

Aufgabe 1. Zeigen oder widerlegen Sie: Für alle $A \in \mathbb{Z}^{n \times m}$ gilt

- a) $\mathbb{Z}^m / \ker_{\mathbb{Z}} A$ ist torsionsfrei.
- b) $\mathbb{Z}^n/\operatorname{im}_{\mathbb{Z}} A$ ist torsionsfrei.
- c) $\ker_{\mathbb{Z}} A = \mathbb{Z}^m \cap \ker_{\mathbb{Q}} A$.
- d) $\operatorname{im}_{\mathbb{Z}} A = \mathbb{Z}^n \cap \operatorname{im}_{\mathbb{Q}} A$.

Aufgabe 2.

a) Sei $E = \{ \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \}$ und $M = \langle E \rangle \subseteq \mathbb{Z}^3$ der von E erzeugte Untermodul von \mathbb{Z}^3 . Berechnen Sie eine Basis von M und zeigen Sie, dass keine Teilmenge von E eine Basis von M ist.

b) Berechnen Sie eine Basis des \mathbb{Z} -Moduls $\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \rangle \cap \langle \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \end{pmatrix} \rangle \subseteq \mathbb{Z}^2$.

Aufgabe 3. Nehmen Sie an, Sie müssen mit einem bestimmten Computeralgebrasystem arbeiten, das zwar Hermite-Normalformen von Matrizen in $\mathbb{Z}^{n\times m}$ berechnen kann, dem aber eine Implementierung des erweiterten euklidischen Algorithmus für \mathbb{Z} fehlt. Wie würden Sie in diesem System für zwei gegebene Zahlen $p,q\in\mathbb{Z}$ die Kofaktoren $u,v\in\mathbb{Z}$ mit $\gcd(p,q)=up+vq$ bestimmen?

Aufgabe 4. (Diese Aufgabe ist schriftlich auszuarbeiten.) Seien $A \in \mathbb{Z}^{n \times m}$, $b \in \mathbb{Z}^n$. Wir interessieren uns für die Lösungen $x \in \mathbb{Z}^m$ des inhomogenen Gleichungssystems Ax = b.

- a) Zeigen Sie: wenn die Lösungsmenge nicht leer ist, dann hat sie die Form $x_0 + \ker_{\mathbb{Z}} A$ für ein $x_0 \in \mathbb{Z}^m$.
- b) Entwerfen Sie einen Algorithmus, der für gegebenes A, b die Lösungsmenge berechnet (also ein $x_0 \in \mathbb{Z}^m$ und eine Basis von $\ker_{\mathbb{Z}} A$).
- c) Konstruieren Sie ein $A \in \mathbb{Z}^{2\times 2}$ und ein $b \in \mathbb{Z}^2$, so dass das System Ax = b viele Lösungen in \mathbb{Q}^2 , aber keine Lösungen in \mathbb{Z}^2 hat.

Aufgabe 5. Die Hermite-Normalform lässt sich auch für Matrizen mit Einträgen in $\mathbb{K}[X]$ erklären. In diesem Fall verlangt man, dass auf den Treppenstufen Polynome mit führendem Koeffizient 1 stehen, und dass die Einträge oberhalb jeder Treppenstufe einen kleineren Grad haben als der entsprechende Treppenstufeneintrag. Die Berechnung der HNF in $\mathbb{K}[X]^{n\times m}$ verläuft ähnlich wie in $\mathbb{Z}^{n\times m}$. Berechnen Sie eine HNF der Matrix

$$\begin{pmatrix} X+1 & X^2+X+1 & 2X+1 \\ X^2+2X+1 & X^3+2X^2+X+1 & 2X^2 \\ X^2+X & X^3+X^2+2X & 2X^2+X+1 \end{pmatrix} \in \mathbb{Z}_3[X]^{3\times 3}.$$